Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T06:54:57.713Z Has data issue: false hasContentIssue false

Composites based on thermally hyper-conductive vapor grown carbon fiber

Published online by Cambridge University Press:  03 March 2011

Jyh-Ming Ting
Affiliation:
Applied Sciences. Inc., Cedarville, Ohio 45314
Max L. Lake
Affiliation:
Applied Sciences. Inc., Cedarville, Ohio 45314
David R. Duffy*
Affiliation:
Applied Sciences. Inc., Cedarville, Ohio 45314
*
a)Current address: Dana Corporation, Fort Wayne, Indiana 46807.
Get access

Abstract

Aluminum matrix composites and carbon/carbon composites based on vapor grown carbon fiber (VGCF) were fabricated for analysis of thermophysical properties. Due to the highly graphitic nature of VGCF, the resulting composites exhibit values of thermal conductivity that have not been achieved by using any other carbon fibers, and thus represent new materials for thermal management in applications such as packaging for high-power, high-density electronic devices. In the aluminum matrix VGCF composites, a thermal conductivity of 642 W/m-K was obtained by using a VGCF loading of only 36.5 vol.%. For VGCF/C composites, thermal conductivity of 910 W/m-K has been observed, a value which is more than a factor of two higher than that of copper. Based on the observed thermal conductivity of VGCF/Al composites and VGCF/C composites, the room temperature thermal conductivity of VGCF in the composite was calculated to be 1460 W/m-K and 1600 W/m-K, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zweben, C., JOM, July, 1523 (1992).CrossRefGoogle Scholar
2Zweben, C. and Schmidt, K. A., Electronic Materials Handbook, Vol. 1, Packaging, (ASM INTERNATIONAL, Metals Park, OH, 1989).Google Scholar
3Nysten, B. and Issi, J-P., Composite 21, 339 (1990).CrossRefGoogle Scholar
4Schmidt, K. A. and Zweben, C., Thermal and Mechanical Behavior of Metal Matrix Composites, edited by Kennedy, L. M., Morller, H. H., and Johnson, W. S. (ASTM, Philadelphia, PA, 1989).Google Scholar
5Foster, D. A., SAMPE Quarter, August, 5865 (1989).Google Scholar
6Johnson, W. B. and Sonuparlak, B., J. Mater. Res. 8, 1169 (1993).CrossRefGoogle Scholar
7Tyler, J. R. and van den Bergh, M. R., Proc. 3rd Int. SAMPE Electronic Conf., June 20–22, 1989, SAMPE, Pittsburgh, PA, 1989, pp. 10681078.Google Scholar
8Ting, J-M., Lake, M. L., and Ingram, D. C., Diamond ' Related Mater. 2 (57), 1069 (1993).CrossRefGoogle Scholar
9Tibbetts, G. G., Carbon 30(3), 399 (1992).CrossRefGoogle Scholar
10Endo, M. and Shikata, M., Ohyo Butsuri 54 507 (1985).Google Scholar
11Tibbetts, G. G. and Gorkiewicz, D. W., Carbon 31(7), 1039 (1993).CrossRefGoogle Scholar
12Katsumata, M., Endo, M., Ushijima, H., and Yamanashi, H., J. Mater. Res. 9, 841 (1994).CrossRefGoogle Scholar
13Ting, J. and Lake, M. L., J. Mater. Res. 9, 636 (1994).CrossRefGoogle Scholar
14Ting, J-M. and Lake, M. L., JOM 36(3), 23 (1994).CrossRefGoogle Scholar
15Lake, M. L., Ting, J-M., and Phillips, J.F. Jr., Surf. ' Coatings Technol. 62, 367 (1993).CrossRefGoogle Scholar
16Endo, M. and Komaki, K., Extended Abstracts, 16th Biennial Conference on Carbon, 523 (1983).Google Scholar
17Mortensen, A., Masur, L. J., Cornie, J. A., and Flemings, M.C., Metall. Trans. 20A, 2535 (1989).CrossRefGoogle Scholar
18Mortensen, A., Masur, L. J., Cornie, J. A., and Flemings, M.C., Metall. Trans. 20A, 2549 (1989).Google Scholar
19Klier, E., Mortensen, A., Cornie, J. A., and Flemings, M.C., J. Mater. Sci., July (1990).Google Scholar
20Taylor, R. E., Thermophysical Properties Research Lab. Rep. #181A, Purdue University, July (1985).Google Scholar
21CRC Handbook of Chemistry and Physics, edited by Lide, D.R., 73rd ed. (CRC Press, Ann Arbor, MI, 1992).Google Scholar
22Piraux, L., Nystem, B., Haquenne, A., Issi, J-P., Dresselhaus, M. S., and Endo, M. S., Solid State Commun. 50, 697 (1984).CrossRefGoogle Scholar
23Heremans, J., Rahim, I., and Dresselhaus, M. S., Phys. Rev. B 32, 6742 (1985).CrossRefGoogle Scholar
24Heremans, J. and Beetz, C. P., J. Phys. Rev. B 32, 1981 (1985).CrossRefGoogle Scholar
25Tibbetts, G. G., Endo, M., and Beetz, C.P. Jr., SAMPE J. 22–5, Sept./Oct. (1986).Google Scholar
26Agarwal, B. D. and Broutman, L. J., Analysis and Performance of Fiber Composites (John Wiley, New York, 1980).Google Scholar
27Taylor, R. E. and Kelsic, B. H., J. Heat Trans. 108, 161, Feb. (1986).CrossRefGoogle Scholar
28Dresselhaus, M. S., Dresselhaus, G. D., Sugihara, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments (Springer-Verlag, New York, 1988).CrossRefGoogle Scholar