Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T02:31:26.107Z Has data issue: false hasContentIssue false

Comparison of two tungsten–helium interatomic potentials

Published online by Cambridge University Press:  28 January 2015

Li-Fang Wang
Affiliation:
Department of Physics, School of Physics and Nuclear Engineering, Beihang University, Beijing 100191, China
Xiaolin Shu*
Affiliation:
Department of Physics, School of Physics and Nuclear Engineering, Beihang University, Beijing 100191, China
Guang-Hong Lu
Affiliation:
Department of Physics, School of Physics and Nuclear Engineering, Beihang University, Beijing 100191, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have clarified the performance of two tungsten–helium analytical interatomic potentials, one of which, developed by Li et al., is a bond-order potential, and another, developed by Juslin et al., is a combination of embedded atom method potential and pair potential. Using these two potentials, we have simulated and made a full comparison of formation energy and migration energy of different defects including helium and vacancy, binding energies of helium and vacancy with helium-vacancy cluster, surface energy, as well as melting point, with reference to the corresponding results from the first-principles and experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: William J. Weber

References

REFERENCES

Luo, G-N., Shu, W., and Nishi, M.: Incident energy dependence of blistering at tungsten irradiated by low energy high flux deuterium plasma beams. J. Nucl. Mater. 347(1), 111 (2005).Google Scholar
Luo, G-N., Shu, W., and Nishi, M.: Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10–100 eV plasmas. Fusion Eng. Des. 81(8), 957 (2006).Google Scholar
Fukumoto, M., Ohtsuka, Y., Ueda, Y., Taniguchi, M., Kashiwagi, M., Inoue, T., and Sakamoto, K.: Blister formation on tungsten damaged by high energy particle irradiation. J. Nucl. Mater. 375(2), 224 (2008).CrossRefGoogle Scholar
Luo, G-N., Liu, M., Kuang, Z., Zhang, X., Yang, Z., Deng, C., Zhang, Z., Li, J., and Zhou, K.: Directly-cooled VPS-W/Cu limiter and its preliminary results in HT-7. J. Nucl. Mater. 363, 1241 (2007).CrossRefGoogle Scholar
Ueda, Y., Fukumoto, M., Yoshida, J., Ohtsuka, Y., Akiyoshi, R., Iwakiri, H., and Yoshida, N.: Simultaneous irradiation effects of hydrogen and helium ions on tungsten. J. Nucl. Mater. 386, 725 (2009).CrossRefGoogle Scholar
Sefta, F., Hammond, K.D., Juslin, N., and Wirth, B.D.: Tungsten surface evolution by helium bubble nucleation, growth and rupture. Nucl. Fusion 53(7), 073015 (2013).CrossRefGoogle Scholar
Juslin, N., Jansson, V., and Nordlund, K.: Simulation of cascades in tungsten–helium. Philos. Mag. 90(26), 3581 (2010).CrossRefGoogle Scholar
Henriksson, K.O., Nordlund, K., and Keinonen, J.: Molecular dynamics simulations of helium cluster formation in tungsten. Nucl. Instrum. Methods Phys. Res., Sect. B 244(2), 377 (2006).CrossRefGoogle Scholar
Li, X.C., Liu, Y.N., Yu, Y., Luo, G.N., Shu, X.L., and Lu, G.H.: Helium defects interactions and mechanism of helium bubble growth in tungsten: A molecular dynamics simulation. J. Nucl. Mater. 451(1–3), 356 (2014).Google Scholar
Shu, X.L., Tao, P., Li, X.C., and Yu, Y.: Helium diffusion in tungsten: A molecular dynamics study. Nucl. Instrum. Methods Phys. Res., Sect. B 303, 84 (2013).Google Scholar
Li, X-C., Shu, X., Liu, Y-N., Yu, Y., Gao, F., and Lu, G-H.: Analytical W–He and H–He interatomic potentials for a W–H–He system. J. Nucl. Mater. 426(1), 31 (2012).Google Scholar
Juslin, N. and Wirth, B.D.: Interatomic potentials for simulation of He bubble formation in W. J. Nucl. Mater. 432(1–3), 61 (2013).Google Scholar
Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991 (1988).Google Scholar
Abell, G.: Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31(10), 6184 (1985).CrossRefGoogle ScholarPubMed
Brenner, D.W.: Relationship between the embedded-atom method and Tersoff potentials. Phys. Rev. Lett. 63(9), 1022 (1989).Google Scholar
Albe, K., Nordlund, K., and Averback, R.S.: Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon. Phys. Rev. B 65(19), 195124 (2002).CrossRefGoogle Scholar
Nordlund, K. and Dudarev, S.L.: Interatomic potentials for simulating radiation damage effects in metals. C. R. Phys. 9(3), 343 (2008).Google Scholar
Aziz, R. and Slaman, M.: An analysis of the ITS-90 relations for the non-ideality of 3He and 4He: Recommended relations based on a new interatomic potential for helium. Metrologia 27(4), 211 (1990).CrossRefGoogle Scholar
Juslin, N. and Nordlund, K.: Pair potential for Fe–He. J. Nucl. Mater. 382(2), 143 (2008).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995).CrossRefGoogle Scholar
Li, X-C., Shu, X., Liu, Y-N., Gao, F., and Lu, G-H.: Modified analytical interatomic potential for a W–H system with defects. J. Nucl. Mater. 408(1), 12 (2011).Google Scholar
Nguyen-Manh, D., Horsfield, A.P., and Dudarev, S.L.: Self-interstitial atom defects in bcc transition metals: Group-specific trends. Phys. Rev. B 73(2), 020101 (2006).Google Scholar
Becquart, C.S. and Domain, C.: Ab initio calculations about intrinsic point defects and He in W. Nucl. Instrum. Methods Phys. Res., Sect. B 255(1), 23 (2007).CrossRefGoogle Scholar
Neklyudov, I.M., Sadanov, E.V., Tolstolutskaja, G.D., Ksenofontov, V.A., Mazilova, T.I., and Mikhailovskij, I.M.: Interstitial atoms in tungsten: Interaction with free surface and in situ determination of formation energy. Phys. Rev. B 78(11), 115418 (2008).CrossRefGoogle Scholar
Derlet, P.M., Nguyen-Manh, D., and Dudarev, S.L.: Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys. Rev. B 76(5), 054107 (2007).Google Scholar
Vitos, L., Ruban, A.V., Skriver, H.L., and Kollár, J.: The surface energy of metals. Surf. Sci. 411(1–2), 186 (1998).Google Scholar
Tyson, W.R. and Miller, W.A.: Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 62(1), 267 (1977).CrossRefGoogle Scholar
Xu, W. and Adams, J.B.: Fourth moment approximation to tight binding: Application to bcc transition metals. Surf. Sci. 301(1–3), 371 (1994).Google Scholar
Becquart, C.S. and Domain, C.: Migration energy of He in W revisited by ab initio calculations. Phys. Rev. Lett. 97(19), 196402 (2006).CrossRefGoogle Scholar
Zhou, H.B., Liu, Y.L., Jin, S., Zhang, Y., Luo, G.N., and Lu, G.H.: Towards suppressing H blistering by investigating the physical origin of the H-He interaction in W. Nucl. Fusion 50(11), 115010 (2010).CrossRefGoogle Scholar
Wagner, A. and Seidman, D.N.: Range profiles of 300- and 475-eV He+4 ions and the diffusivity of He4 in tungsten. Phys. Rev. Lett. 42(8), 515 (1979).CrossRefGoogle Scholar
Becquart, C.S. and Domain, C.: An object kinetic Monte Carlo simulation of the dynamics of helium and point defects in tungsten. J. Nucl. Mater. 385(2), 223 (2009).Google Scholar