Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T13:11:36.488Z Has data issue: false hasContentIssue false

Comparison of the critical current anisotropy in epitaxial YBa2Cu3O7−x films on (100) LaAlO3 and (100) yttria stabilized zirconia

Published online by Cambridge University Press:  03 March 2011

K.S. Harshavardhan
Affiliation:
Bellcore, Red Bank, New Jersey 07701
M. Rajeswari
Affiliation:
Bellcore, Red Bank, New Jersey 07701
D.M. Hwang
Affiliation:
Bellcore, Red Bank, New Jersey 07701
C.Y. Chen
Affiliation:
Bellcore, Red Bank, New Jersey 07701
T. Sands
Affiliation:
Bellcore, Red Bank, New Jersey 07701
T. Venkatesan
Affiliation:
Department of Physics, Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742
Get access

Abstract

The angular magnetic field dependence of the critical current density JC(θ) of epitaxial YBa2Cu3O7 thin films is presented in the temperature regime close to Tc. The high temperature behavior of Jc(θ) shows features that are significantly different from the earlier observations at lower temperatures. A comparison between the films on (100) LaAlO3 and (100) yttria stabilized zirconia (YSZ) indicates significant differences that may be attributed to the differences in the microstructure of the films on the two substrates. In particular, the observation of enhanced pinning in the films on YSZ may be due to the pinning effects of the low angle grain boundaries present in these films.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Roas, B., Schultz, L., and Saemann-Ischenko, G., Phys. Rev. Lett. 64, 479 (1990).CrossRefGoogle Scholar
2Schmitt, P., Kummeth, P., Schultz, L., and Saemann-Ischenko, G., Phys. Rev. Lett. 67, 267 (1991).CrossRefGoogle Scholar
3Tachiki, M. and Takahashi, S., Solid State Commun. 70, 291 (1989); 72, 1083 (1989).CrossRefGoogle Scholar
4Campbell, A. M., IEEE Trans. Magn. 27, 1660 (1991).CrossRefGoogle Scholar
5Harshavardhan, K. S., Rajeswari, M., Hwang, D. M., Chen, C. Y., Venkatesan, T., Tkaczyk, J. E., and Lay, K. W., Appl. Phys. Lett. 60, 1660 (1992).Google Scholar
6Civale, L., Marwick, A. D., Worthington, T. K., Kirk, M. A., Thompson, J. R., Krusin-Elbaum, L., Sun, Y., Clem, J. R., and Holtzberg, F., Phys. Rev. Lett. 67, 648 (1991).CrossRefGoogle Scholar
7Ramesh, R., Chang, C. C., Ravi, T. S., Hwang, D. M., Inam, A., Xi, X. X., Li, Q., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1065 (1990).Google Scholar
8Hwang, D. M., Ravi, T. S., Ramesh, R., Chan, S. W., Chen, C. Y., Nazar, L., Wu, X. D., Inam, A., and Venkatesan, T., Appl. Phys. Lett. 57, 1690 (1990).Google Scholar
9Fork, D. K., Char, K., Bridges, F., Tahara, S., Lairson, B., Boyce, J. B., Connell, G. A.N., and Geballe, T.H., Physica C 162–164, 121 (1989).Google Scholar
10Garrison, S. M., Newman, N., Cole, B. F., Char, K., and Barton, R. W., Appl. Phys. Lett. 58, 2168 (1991).CrossRefGoogle Scholar
11Norton, D. P., Lowndes, D. H., Budai, J. D., Christen, D. K., Jones, E. C., Lay, K. W., and Tkaczyk, J. E., Appl. Phys. Lett. 57, 1164 (1990).CrossRefGoogle Scholar
12Zhang, J. P., Durgand, S. Y., and Kwok, H. S., Appl. Phys. Lett. 58, 540 (1991).CrossRefGoogle Scholar
13Fork, D. K., Garrison, S. M., Hawley, M., and Geballe, T. H., J. Mater. Res. 7, 1641 (1992).CrossRefGoogle Scholar
14Campbell, A. M. and Evetts, J. E., Critical Currents in Superconductors (Taylor & Francis Ltd., London, 1972).Google Scholar