Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T06:25:17.897Z Has data issue: false hasContentIssue false

Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

Published online by Cambridge University Press:  31 January 2011

Paul A. Brühwiler*
Affiliation:
Empa, Swiss Federal Laboratories for Materials Testing and Research, CH-9014 St. Gallen, Switzerland; and Department of Physics and Materials Science, Uppsala University, SE-751 21 Uppsala, Sweden
Adly Necola
Affiliation:
Empa, CH-8600 Dübendorf, Switzerland
Doug J. Kohls
Affiliation:
Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Oliver Bunk
Affiliation:
Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen PSI, Switzerland
Dale W. Schaefer*
Affiliation:
Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Petra Pötschke
Affiliation:
Leibniz Institute of Polymer Research Dresden, Department of Polymer Reactions and Blends, D-01069 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
b)This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/JMR/policy.html
Get access

Abstract

We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0–2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorption are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ajayan, P.M., Tour, J.M.Materials science: Nanotube composites. Nature 447, 1066 (2007)CrossRefGoogle ScholarPubMed
2.Baughman, R.H., Zakhidov, A.A., de Heer, W.A.Carbon nanotubes—The route toward applications. Science 297, 787 (2002)CrossRefGoogle ScholarPubMed
3.Auad, M.L., Mosiewicki, M.A., Uzunpinar, C., Williams, R.J.J.Single-wall carbon nanotubes/epoxy elastomers exhibiting high damping capacity in an extended temperature range. Compos. Sci. Technol. 69, 1088 (2009)CrossRefGoogle Scholar
4.Zhou, X., Shin, E., Wang, K.W., Bakis, C.E.Interfacial damping characteristics of carbon nanotube-based composites. Compos. Sci. Technol. 64, 2425 (2004)CrossRefGoogle Scholar
5.Suhr, J., Koratkar, N.Energy dissipation in carbon nanotube composites: A review. J. Mater. Sci. 43, 4370 (2008)CrossRefGoogle Scholar
6.Zhang, W., Picu, R.C., Koratkar, N.The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites. Nanotechnology 19, 285709 (2008)CrossRefGoogle ScholarPubMed
7.Suhr, J., Victor, P., Ci, L., Sreekala, S., Zhang, X., Nalamasu, O., Ajayan, P.M.Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2, 417 (2007)CrossRefGoogle ScholarPubMed
8.Gao, Y., He, P., Lian, J., Wang, L.M., Qian, D., Zhao, J., Wang, W., Schulz, M.J., Zhang, J., Zhou, X.P., Shi, D.L.Improving the mechanical properties of polycarbonate nanocomposites with plasma-modified carbon nanofibers. J. Macromol. Sci. Part B Phys. 45, 671 (2006)CrossRefGoogle Scholar
9.Kum, C.K., Sung, Y.T., Han, M.S., Kim, W.N., Lee, H.S., Lee, S.J., Joo, J.Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macromol. Res. 14, 456 (2006)CrossRefGoogle Scholar
10.Pötschke, P., Brünig, H., Janke, A., Fischer, D., Jehnichen, D.Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer (Guildf.) 46, 10355 (2005)CrossRefGoogle Scholar
11.Choi, Y.K., Sugimoto, K., Song, S.M., Endo, M.Production and characterization of polycarbonate composite sheets reinforced with vapor grown carbon fiber. Composites Part A 37, 1944 (2006)CrossRefGoogle Scholar
12.Eitan, A., Fisher, F.T., Andrews, R., Brinson, L.C., Schadler, L.S.Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos. Sci. Technol. 66, 1162 (2006)CrossRefGoogle Scholar
13.Satapathy, B.K., Weidisch, R., Pötschke, P., Janke, A.Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Compos. Sci. Technol. 67, 867 (2007)CrossRefGoogle Scholar
14.Rouabah, F., Fois, M., Ibos, L., Boudenne, A., Dadache, D., Haddaoui, N., Ausset, P.Mechanical and thermal properties of polycarbonate. II. Influence of titanium dioxide content and quenching on pigmented polycarbonate. J. Appl. Polym. Sci. 106, 2710 (2007)CrossRefGoogle Scholar
15.Hornberger, L.E., Fan, G., Devries, K.L.Effect of thermal treatment on the impact strength of polycarbonate. J. Appl. Phys. 60, 2678 (1986)CrossRefGoogle Scholar
16.Mills, N.J.The mechanism of brittle-fracture in notched impact tests on polycarbonate. J. Mater. Sci. 11, 363 (1976)CrossRefGoogle Scholar
17.Ryan, J.T.Impact and yield properties of polycarbonate as a function of strain rate, molecular weight, thermal history, and temperature. Polym. Eng. Sci. 18, 264 (1978)CrossRefGoogle Scholar
18.Cheng, C., Hiltner, A., Baer, E., Soskey, P.R., Mylonakis, S.G.Deformation of rubber-toughened polycarbonate: Macroscale analysis of the damage zone. J. Appl. Polym. Sci. 52, 177 (1994)CrossRefGoogle Scholar
19.Ho, K-C., Hwang, J-R., Doong, J-L.Impact fatigue of short glass fiber reinforced polycarbonate. J. Reinf. Plast. Compos. 16, 903 (1997)CrossRefGoogle Scholar
20.Pitman, G.L., Ward, I.M., Duckett, R.A.Effects of thermal pretreatment and molecular-weight on impact behavior of polycarbonate. J. Mater. Sci. 13, 2092 (1978)CrossRefGoogle Scholar
21.Sarva, S., Mulliken, A.D., Boyce, M.C.Mechanics of Taylor impact testing of polycarbonate. Int. J. Solids Struct. 44, 2381 (2007)CrossRefGoogle Scholar
22.Shin, H.S., Park, S.T., Kim, S.J., Choi, J.H., Kim, J.T.Deformation behavior of polymeric materials by Taylor impact. Int. J. Mod. Phys. B 22, 1235 (2008)CrossRefGoogle Scholar
23.Sato, Y., Yoshida, M., Nagayama, K., Horie, Y.Stress–strain relationships of polycarbonate over a wide range of strain rate, including a shock wave regime. Int. J. Impact Eng. 35, 1778 (2008)CrossRefGoogle Scholar
24.Lerch, V., Gary, G., Herve, P.Thermomechanical properties of polycarbonate under dynamic loading. J. Phys. IV (France) 110, 159 (2003)CrossRefGoogle Scholar
25.Mulliken, A.D., Boyce, M.C.Polycarbonate and a polycarbonate-POSS nanocomposite at high rates of deformation. J. Eng. Mater. Technol. 128, 543 (2006)CrossRefGoogle Scholar
26.Sarva, S.S., Boyce, M.C.Mechanics of polycarbonate during high-rate tension. J. Mech. Mater. Struct. 2, 1853 (2007)CrossRefGoogle Scholar
27.Xia, Z., Sue, H-J., Hsieh, A.J.Impact fracture behavior of molecularly orientated polycarbonate sheets. J. Appl. Polym. Sci. 79, 2060 (2001)3.0.CO;2-E>CrossRefGoogle Scholar
28.Hou, X., Goldsmith, W.Projectile perforation of moving plates: Experimental investigation. Int. J. Impact Eng. 18, 859 (1996)CrossRefGoogle Scholar
29.Nimmer, R.P.An analytic study of tensile and puncture test behavior as a function of large-strain properties. Polym. Eng. Sci. 27, 263 (1987)CrossRefGoogle Scholar
30.Nimmer, R.P.Analysis of the puncture of a bisphenol-a polycarbonate disc. Polym. Eng. Sci. 23, 155 (1983)CrossRefGoogle Scholar
31.Pötschke, P., Fornes, T.D., Paul, D.R.Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer (Guildf.) 43, 3247 (2002)CrossRefGoogle Scholar
32.Bunk, O., Bech, M., Jensen, T.H., Feidenhans'l, R., Binderup, T., Menzel, A., Pfeiffer, F.Multimodal x-ray scatter imaging. N. J. Phys. 11, 123016 (2009)CrossRefGoogle Scholar
33.Casiraghi, T., Castiglioni, G., Ajroldi, G.A study of the impact behavior of injection molded polypropylene using 2 different modes of testing. Plast. Rubber Process. Appl. 2, 353 (1982)Google Scholar
34.Duan, Y., Saigal, A., Greif, R., Zimmerman, M.A.Modeling multiaxial impact behavior of a glassy polymer. Mater. Res. Innovat. 7, 10 (2003)CrossRefGoogle Scholar
35.Villmow, T., Pegel, S., Pötschke, P., Wagenknecht, U.Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Compos. Sci. Technol. 68, 777 (2008)CrossRefGoogle Scholar
36.Beaucage, G., Schaefer, D.W.Structural studies of complex systems using small-angle scattering: A unified Guinier power-law approach. J. Non-Cryst. Solids 172, 797 (1994)CrossRefGoogle Scholar
37.Roe, R.J.Methods of X-ray and Neutron Scattering in Polymer Science (Oxford University Press, New York 2000)Google Scholar
38.Justice, R.S., Wang, D.H., Tan, L-S., Schaefer, D.W.Simplified tube form factor for analysis of small-angle scattering data from carbon nanotube filled systems. J. Appl. Cryst. 40, s88 (2007)CrossRefGoogle Scholar
39.Schaefer, D.W., Justice, R.S.How nano are nanocomposites? Macromolecules 40, 8501 (2007)CrossRefGoogle Scholar
40.Schaefer, D.W., Rieker, T., Agamalian, M., Lin, J.S., Fischer, D., Sukumaran, S., Chen, C.Y., Beaucage, G., Herd, C., Ivie, J.Multilevel structure of reinforcing silica and carbon. J. Appl. Cryst. 33, 587 (2000)CrossRefGoogle Scholar
41.Villmow, T., Pötschke, P., Pegel, S., Häussler, L., Kretzschmar, B.Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer (Guildf.) 49, 3500 (2008)CrossRefGoogle Scholar
42.Boyce, M.C., Haward, R.N.The post yield deformation of glassy polymersThe Physics of Glassy Polymers edited by R.N. Haward and R. Young (Chapman and Hall, London, UK 1997)213CrossRefGoogle Scholar
43.Schrauwen, B.A.G., van Breemen, L.C.A., Spoelstra, A.B., Govaert, L.E., Peters, G.W.M., Meijer, H.E.H.Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 37, 8618 (2004)CrossRefGoogle Scholar
44.Tjong, S.C., Meng, Y.Z.Effect of reactive compatibilizers on the mechanical properties of polycarbonate/poly(acrylonitrile-butadiene-styrene) blends. Eur. Polym. J. 36, 123 (2000)CrossRefGoogle Scholar
45.Ding, W., Eitan, A., Fisher, F.T., Chen, X., Dikin, D.A., Andrews, R., Brinson, L.C., Schadler, L.S., Ruoff, R.S.Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Lett. 3, 1593 (2003)CrossRefGoogle Scholar
46.Hsieh, A.J., Moy, P., Beyer, F.L., Madison, P., Napadensky, E., Ren, J., Krishnamoorti, R.Mechanical response and rheological properties of polycarbonate layered-silicate nanocomposites. Polym. Eng. Sci. 44, 825 (2004)CrossRefGoogle Scholar
47.Satapathy, B.K., Ganß, M., Weidisch, R., Pötschke, P., Jehnichen, D., Keller, T., Jandt, K.D.Ductile-to-semiductile transition in PP-MWNT nanocomposites. Macromol. Rapid Commun. 28, 834 (2007)CrossRefGoogle Scholar
48.Carrión, F.J., Sanes, J., Bermúdez, M-D.Influence of ZnO nanoparticle filler on the properties and wear resistance of polycarbonate. Wear 262, 1504 (2007)CrossRefGoogle Scholar
49.Sánchez-Soto, M., Schiraldi, D.A., Illescas, S.Study of the morphology and properties of melt-mixed polycarbonate-POSS nanocomposites. Eur. Polym. J. 45, 341 (2009)CrossRefGoogle Scholar
50.Fornes, T.D., Baur, J.W., Sabba, Y., Thomas, E.L.Morphology and properties of melt-spun polycarbonate fibers containing single- and multi-wall carbon nanotubes. Polymer (Guildf.) 47, 1704 (2006)CrossRefGoogle Scholar
51.Hornbostel, B., Pötschke, P., Kotz, J., Roth, S.Single-walled carbon nanotubes/polycarbonate composites: Basic electrical and mechanical properties. Phys. Status Solidi B 243, 3445 (2006)CrossRefGoogle Scholar
52.Zhang, W., Suhr, J., Koratkar, N.A.Observation of high buckling stability in carbon nanotube polymer composites. Adv. Mater. 18, 452 (2006)CrossRefGoogle Scholar
53.Truss, R.W., Yeow, T.K.Effect of exfoliation and dispersion on the yield behavior of melt-compounded polyethylene-montmorillonite nanocomposites. J. Appl. Polym. Sci. 100, 3044 (2006)CrossRefGoogle Scholar
54.Aït Hocine, N., Médéric, P., Aubry, T.Mechanical properties of polyamide-12 layered silicate nanocomposites and their relations with structure. Polym. Test. 27, 330 (2008)CrossRefGoogle Scholar
55.Rothon, R.N.Particulate-Filled Polymer Composites (Rapra Technology Limited, Shropshire, UK 2003)377419Google Scholar
56.Chen, B., Evans, J.R.G.Impact and tensile energies of fracture in polymer-clay nanocomposites. Polymer (Guildf.) 49, 5113 (2008)CrossRefGoogle Scholar
57.Prashantha, K., Soulestin, J., Lacrampe, M.F., Krawczak, P., Dupin, G., Claes, M.Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos. Sci. Technol. 69, 1756 (2009)CrossRefGoogle Scholar
58.Dong, Y., Bhattacharyya, D.Effects of clay type, clay/compatibiliser content and matrix viscosity on the mechanical properties of polypropylene/organoclay nanocomposites. Composites Part A 39, 1177 (2008)CrossRefGoogle Scholar
59.Kar, K.K., Srivastava, S., Rahaman, A., Nayak, S.K.Acrylonitrile-butadiene-styrene nanocomposites filled with nanosized alumina. Polym. Compos. 29, 489 (2008)CrossRefGoogle Scholar