Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T05:05:08.812Z Has data issue: false hasContentIssue false

A comparison of nanoindentation creep deformation characteristics of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) exoskeletons

Published online by Cambridge University Press:  30 March 2015

Devendra Verma
Affiliation:
School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907, USA
Vikas Tomar*
Affiliation:
School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This investigation reports mechanical properties of the exoskeleton of deep sea shrimp, Rimicaris exoculata, at temperatures ranging from 25 to 80 °C measured using nanoindentation experiments. The measured properties are compared with the corresponding shallow water shrimp (Pandalus platyceros) exoskeleton properties. Scanning electron microscopy suggests that both types of shrimp exoskeletons have the twisted plywood, Bouligand structure. However, they differ in the volume fraction and distribution of mineral content. The variations in the nanoindentation measured hardness values of the examined shrimp exoskeletons are found to be strongly correlated with the corresponding compositional difference between the two exoskeleton types. Nanoindentation creep strain rate measurements are performed to provide an assessment of the two types of exoskeleton for the role of proteins and minerals to cause difference in behavior and properties between the two shrimp species. The measured creep load–depth data are fitted with a viscoelastic creep function to find the creep compliance as a function of experimentally varying temperature and in the context of natural variations in mineral content.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mayer, G.: New classes of tough composite materials—Lessons from natural rigid biological systems. Mater. Sci. Eng., C 26(8), 1261 (2006).Google Scholar
Mayer, G.: New toughening concepts for ceramic composites from rigid natural materials. J. Mech. Behav. Biomed. Mater. 4(5), 670 (2011).Google Scholar
Chen, B., Peng, X., Wang, J.G., and Wu, X.: Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceram. Int. 30(7), 2011 (2004).CrossRefGoogle Scholar
Hepburn, H.R., Joffe, I., Green, N., and Nelson, K.J.: Mechanical properties of a crab shell. Comp. Biochem. Physiol., Part A: Physiol. 50(3), 551 (1975).CrossRefGoogle Scholar
Barthelat, F., Rim, J.E., and Espinosa, H.D.: A Review on the Structure and Mechanical Properties of Mollusk Shells – Perspectives on Synthetic Biomimetic Materials. In Applied Scanning Probe Methods XIII. B. Bhushan, H. Fuchs, eds. (Springer, Berlin Heidelberg, 2009); 17–44.Google Scholar
Boßelmann, F., Romano, P., Fabritius, H., Raabe, D., and Epple, M.: The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim. Acta 463(1–2), 65 (2007).Google Scholar
Raabe, D., Romano, P., Sachs, C., Fabritius, H., Al-Sawalmih, A., Yi, S-B., Servos, G., and Hartwig, H.: Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater. Sci. Eng., A 421(1), 143 (2006).CrossRefGoogle Scholar
Raabe, D., Sachs, C., and Romano, P.: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53(15), 4281 (2005).Google Scholar
Bouligand, Y.: Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4(2), 189 (1972).Google Scholar
Giraud-Guille, M.M.: Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16(1), 75 (1984).Google Scholar
Chen, P-Y., Lin, A.Y.M., McKittrick, J., and Meyers, M.A.: Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4(3), 587 (2008).Google Scholar
Seki, Y., Kad, B., Benson, D., and Meyers, M.A.: The toucan beak: Structure and mechanical response. Mater. Sci. Eng., C 26(8), 1412 (2006).Google Scholar
Seki, Y., Schneider, M.S., and Meyers, M.A.: Structure and mechanical behavior of a toucan beak. Acta Mater. 53(20), 5281 (2005).Google Scholar
Lian, J. and Wang, J.: Microstructure and mechanical properties of Dungeness crab exoskeletons. In Mechanics of Biological Systems and Materials, Vol. 2, Proulx, T. ed.; Springer: New York, 2011; pp. 93.Google Scholar
Melnick, C.A., Chen, Z., and Mecholsky, J.J.: Hardness and toughness of exoskeleton material in the stone crab, Menippe mercenaria. J. Mater. Res. 11(11), 2903 (1996).Google Scholar
Fricke, H., Giere, O., Stetter, K., Alfredsson, G.A., Kristjansson, J.K., Stoffers, P., and Svavarsson, J.: Hydrothermal vent communities at the shallow subpolar Mid-Atlantic ridge. Mar. Biol. 102(3), 425 (1989).Google Scholar
Desbruyères, D., Biscoito, M., Caprais, J.C., Colaço, A., Comtet, T., Crassous, P., Fouquet, Y., Khripounoff, A., Le Bris, N., Olu, K., Riso, R., Sarradin, P.M., Segonzac, M., and Vangriesheim, A.: Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep Sea Res., Part I 48(5), 1325 (2001).CrossRefGoogle Scholar
Ahyong, S.T.: New species and new records of hydrothermal vent shrimps from New Zealand (Caridea: Alvinocarididae, Hippolytidae). Crustaceana 82(7), 775 (2009).Google Scholar
Vrijenhoek, R.C.: Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Mol. Ecol. 19(20), 4391 (2010).Google Scholar
Connelly, D.P., Copley, J.T., Murton, B.J., Stansfield, K., Tyler, P.A., German, C.R., Van Dover, C.L., Amon, D., Furlong, M., Grindlay, N., Hayman, N., Huhnerbach, V., Judge, M., Le Bas, T., McPhail, S., Meier, A., Nakamura, K-i., Nye, V., Pebody, M., Pedersen, R.B., Plouviez, S., Sands, C., Searle, R.C., Stevenson, P., Taws, S., and Wilcox, S.: Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nat. Commun. 3, 620 (2012).CrossRefGoogle ScholarPubMed
Clarke, A. and Fraser, K.P.P.: Why does metabolism scale with temperature? Funct. Ecol. 18(2), 243 (2004).Google Scholar
Smith, F., Brown, A., Mestre, N.C., Reed, A.J., and Thatje, S.: Thermal adaptations in deep-sea hydrothermal vent and shallow-water shrimp. Deep Sea Res., Part II 92, 234 (2013).Google Scholar
Spanopoulos-Hernández, M., Martínez-Palacios, C.A., Vanegas-Pérez, R.C., Rosas, C., and Ross, L.G.: The combined effects of salinity and temperature on the oxygen consumption of juvenile shrimps Litopenaeus stylirostris (Stimpson, 1874). Aquaculture 244(1–4), 341 (2005).Google Scholar
Allan, E.L., Froneman, P.W., and Hodgson, A.N.: Effects of temperature and salinity on the standard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi. J. Exp. Mar. Biol. Ecol. 337(1), 103 (2006).Google Scholar
Hourdez, S. and Lallier, F.: Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates. Rev. Environ. Sci. Bio/Technol. 6(1–3), 143 (2007).Google Scholar
Oliphant, A., Thatje, S., Brown, A., Morini, M., Ravaux, J., and Shillito, B.: Pressure tolerance of the shallow-water caridean shrimp Palaemonetes varians across its thermal tolerance window. J. Exp. Biol. 214(7), 1109 (2011).Google Scholar
Ravichandran, S., Rameshkumar, G., and Prince, A.R.: Biochemical composition of shell and flesh of the Indian white shrimp Penaeus indicus (H. milne Edwards 1837). Am.-Eurasian J. Sci. Res. 4(3), 191 (2009).Google Scholar
Ehigiator, F. and Oterai, E.: Chemical composition and amino acid profile of a caridean prawn (Macrobrachium vollenhovenii) from Ovia river and tropical periwinkle (Tympanotonus fuscatus) from Benin river, Edo state, Nigeria. Int. J. Res. Rev. Appl. Sci. 11(1), (2012).Google Scholar
Emmanuel, I.A., Adubiaro, H.O., and Awodola, O.J.: Comparability of chemical composition and functional properties of shell and flesh of Penaeus notabilis Pakistan. J. Nutr. 7(6), 741 (2008).Google Scholar
Shahidi, F. and Synowiecki, J.: Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agric. Food Chem. 39(8), 1527 (1991).Google Scholar
Islam, M., Masum, S., Rahman, M., Moll, M., Shaikh, A., and Roy, S.: Preparation of chitosan from shrimp shell and investigation of its properties. Int. J. Basic Appl. Sci. 11(1), 116 (2011).Google Scholar
Rødde, R.H., Einbu, A., and Vårum, K.M.: A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr. Polym. 71(3), 388 (2008).Google Scholar
Ibrahim, H.M., Salama, M.F., and El-Banna, H.A.: Shrimp's waste: Chemical composition, nutritional value and utilization. Food/Nahrung 43(6), 418 (1999).Google Scholar
Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
Pharr, G.: Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng., A 253(1), 151 (1998).Google Scholar
Gan, M. and Tomar, V.: Scale and temperature dependent creep modeling and experiments in materials. JOM 63(9), 27 (2011).Google Scholar
Gan, M. and Tomar, V.: Role of length scale and temperature in indentation induced creep behavior of polymer derived Si-C-O ceramics. Mater. Sci. Eng., A 527, 7615 (2010).CrossRefGoogle Scholar
Verma, D. and Tomar, V.: Structural-nanomechanical property correlation of shallow water shrimp (Pandalus platyceros) exoskeleton at elevated temperature. J. Bionic Eng. 11(3), 360 (2014).Google Scholar
Verma, D. and Tomar, V.: An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton. Mater. Sci. Eng., C 44, 371 (2014).Google Scholar
Verma, D. and Tomar, V.: An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) at elevated temperatures. Mater. Sci. Eng., C 49, 243 (2015).Google Scholar
Feng, G. and Ngan, A.: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17(3), 660 (2002).Google Scholar
Saha, R. and Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50(1), 23 (2002).Google Scholar
Gamonpilas, C. and Busso, E.P.: On the effect of substrate properties on the indentation behaviour of coated systems. Mater. Sci. Eng., A 380(1–2), 52 (2004).Google Scholar
Kramer, D., Volinsky, A., Moody, N., and Gerberich, W.: Substrate effects on indentation plastic zone development in thin soft films. J. Mater. Res. 16(11), 3150 (2001).CrossRefGoogle Scholar
Koyanagi, J., Yoneyama, S., Nemoto, A., and Melo, J.D.D.: Time and temperature dependence of carbon/epoxy interface strength. Compos. Sci. Technol. 70(9), 1395 (2010).Google Scholar
Tilton, R.F. Jr., Dewan, J.C., and Petsko, G.A.: Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31(9), 2469 (1992).Google Scholar
Frauenfelder, H., Petsko, G.A., and Tsernoglou, D.: Temperature-dependent x-ray diffraction as a probe of protein structural dynamics. Nature 280(5723), 558 (1979).Google Scholar
Cheng, Y-T., Ni, W., and Cheng, C-M.: Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements. J. Mater. Res. 20(11), 3061 (2005).Google Scholar
Tang, B. and Ngan, A.: Accurate measurement of tip–sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18(05), 1141 (2003).CrossRefGoogle Scholar
Ngan, A.H.W., Wang, H.T., Tang, B., and Sze, K.Y.: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int. J. Solids Struct. 42(5–6), 1831 (2005).Google Scholar
Oyen, M.: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86(33–35), 5625 (2006).Google Scholar
Oyen, M.L. and Cook, R.F.: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18(01), 139 (2003).Google Scholar
Cook, R.F. and Oyen, M.L.: Nanoindentation behavior and mechanical properties measurement of polymeric materials. Int. J. Mater. Res. 98(5), 370 (2007).CrossRefGoogle Scholar
Lu, H., Wang, B., Ma, J., Huang, G., and Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7(3–4), 189 (2003).Google Scholar
Shokuhfar, A., Zare-Shahabadi, A., Atai, A-A., Ebrahimi-Nejad, S., and Termeh, M.: Predictive modeling of creep in polymer/layered silicate nanocomposites. Polym. Test. 31(2), 345 (2012).Google Scholar
Nikolaidis, A.K., Achilias, D.S., and Karayannidis, G.P.: Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. Eur. Polym. J. 48(2), 240 (2012).CrossRefGoogle Scholar
Leszczyńska, A., Njuguna, J., Pielichowski, K., and Banerjee, J.R.: Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim. Acta 453(2), 75 (2007).Google Scholar