Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T13:11:42.118Z Has data issue: false hasContentIssue false

Comparison of bulk metallic glass formation between Cu-Hf binary and Cu-Hf-Al ternary alloys

Published online by Cambridge University Press:  31 January 2011

Peng Jia
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Jian Xu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Optimized compositions for bulk metallic glass (BMG) formation have been determined for the Cu−Hf binary and Cu−Hf−Al ternary systems. The Cu−Hf−Al BMG-forming composition region is identified to correlate with the (L → Cu10Hf7 + CuHf2 + CuHfAl) eutectic reaction. The eutectic temperature is reduced by nearly 50 K relative to that of the binary eutectic, demonstrating the significant role of the third element Al in stabilizing the liquid. The fragility parameter D* of the Cu55Hf45 binary and Cu49Hf42Al9 ternary supercooled liquid was determined from relaxation time measurements, indicating that Al incorporation also leads to a “stronger” liquid. The combination of these thermodynamic and kinetic effects is responsible for the dramatic enhancement of glass-forming ability from the Cu−Hf binary to the Cu−Hf−Al ternary.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 1042 1999CrossRefGoogle Scholar
2.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
3.Greer, A.L., Ma, E.: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 2007CrossRefGoogle Scholar
4.Li, Y., Poon, S.J., Shiflet, G.J., Xu, J., Kim, D.H., Löffler, J.F.: Formation of bulk metallic glasses and their composites. MRS Bull. 32, 624 2007CrossRefGoogle Scholar
5.Kui, H.W., Greer, A.L., Turnbull, D.: Formation of bulk metallic glass by fluxing. Appl. Phys. Lett. 45, 615 1984CrossRefGoogle Scholar
6.He, Y., Schwarz, R.B., Archuleta, J.I.: Bulk glass formation in the Pd–Ni–P system. Appl. Phys. Lett. 69, 1861 1996CrossRefGoogle Scholar
7.Inoue, A., Zhang, T., Masumoto, T.: Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Mater. Trans., JIM 31, 425 1990CrossRefGoogle Scholar
8.Zhang, T., Inoue, A., Masumoto, T.: Amorphous Zr–Al–TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans., JIM 32, 1005 1991CrossRefGoogle Scholar
9.Xing, L.Q., Ochin, P.: Investigation of the effects of Al and Ti on the glass forming ability of Zr–Cu–Al and Zr–Ti–Al–Cu–Ni alloys through their solidification characteristics. Acta Mater. 45, 3765 1997CrossRefGoogle Scholar
10.Wang, D., Tan, H., Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 2005CrossRefGoogle Scholar
11.Jing, Q., Zhang, Y., Wang, D., Li, Y.: A study of the glass forming ability in ZrNiAl alloys. Mater. Sci. Eng., A 441, 106 2006CrossRefGoogle Scholar
12.Wiest, A., Duan, G., Demetriou, M.D., Wiest, L.A., Peck, A., Kaltenboeck, G., Wiest, B., Johnson, W.L.: Zr–Ti-based Be-bearing glasses optimized for high thermal stability and thermoplastic formability. Acta Mater. 56, 2625 2008CrossRefGoogle Scholar
13.Inoue, A., Kato, A., Zhang, T., Kim, S.G., Masumoto, T.: Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans., JIM 32, 609 1991CrossRefGoogle Scholar
14.Ma, H., Zheng, Q., Xu, J., Li, Y., Ma, E.: Doubling the critical size for bulk metallic glass formation in the Mg–Cu–Y ternary system. J. Mater. Res. 20, 2252 2005CrossRefGoogle Scholar
15.Men, H., Kim, D.H.: Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere. J. Mater. Res. 18, 1502 2003CrossRefGoogle Scholar
16.Zheng, Q., Cheng, S., Strader, J.H., Ma, E., Xu, J.: Critical size and strength of the best bulk metallic glass former in the Mg–Cu–Gd ternary system. Scr. Mater. 56, 161 2007CrossRefGoogle Scholar
17.Lin, C.Y., Tien, H.Y., Chin, T.S.: Soft magnetic ternary iron-boron-based bulk metallic glasses. Appl. Phys. Lett. 86, 162501 2005CrossRefGoogle Scholar
18.Stoica, M., Hajlaoui, K., Lemoulec, A., Yavari, A.R.: New ternary Fe-based bulk metallic glass with high boron content. Philos. Mag. Lett. 86, 267 2006CrossRefGoogle Scholar
19.Choi-Yim, H., Xu, D.H., Johnson, W.L.: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl. Phys. Lett. 82, 1030 2003CrossRefGoogle Scholar
20.Zhang, L., Zhuo, M.J., Xu, J.: Enhancing bulk metallic glass formation in Ni–Nb–Sn-based alloys via substitutional alloying with Co and Hf. J. Mater. Res. 23, 688 2008CrossRefGoogle Scholar
21.Johnson, W.L.: Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Mater. Sci. Forum 225-227, 35 1996CrossRefGoogle Scholar
22.Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L., Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series—Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 2004CrossRefGoogle Scholar
23.Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K., Ma, E.: Bulk metallic glass formation in the binary Cu-Zr system. Appl. Phys. Lett. 84, 4029 2004CrossRefGoogle Scholar
24.Inoue, A., Zhang, W.: Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods. Mater. Trans. 45, 584 2004CrossRefGoogle Scholar
25.Duan, G., Xu, D.H., Johnson, W.L.: High copper content bulk glass formation in bimetallic Cu–Hf system. Metall. Mater. Trans. A 36, 455 2005CrossRefGoogle Scholar
26.Xia, L., Li, W.H., Fang, S.S., Wei, B.C., Dong, Y.D.: Binary Ni–Nb bulk metallic glasses. J. Appl. Phys. 99, 026103 2006CrossRefGoogle Scholar
27.Villars, P.: Factors govering crystal structures in Intermetallic Compounds: Principles and Practice, Vol. 1, edited by Westbrook, J.H. Fleischer, R.L. (New York: Wiley, 1995), p. 228.Google Scholar
28.Subramanian, P.R., Laughlin, D.E.: Binary Alloy Phase Diagrams, edited by Massalski, T.B. Okamoto, H. Subramanian, P.R. Kacprzak, L. (ASM International Publishing, 1990), p. 1416.Google Scholar
29.Inoue, A., Zhang, W.: Formation and mechanical properties of Cu–Hf–Al bulk glassy alloys with a large supercooled liquid region of over 90 K. J. Mater. Res. 18, 1435 2003CrossRefGoogle Scholar
30.Jia, P., Guo, H., Li, Y., Xu, J., Ma, E.: A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scr. Mater. 54, 2165 2006CrossRefGoogle Scholar
31.Inoue, A., Zhang, W., Zhang, T., Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 2001CrossRefGoogle Scholar
32.Dai, C.L., Deng, J.W., Zhang, Z.X., Xu, J.: Cu–Zr–Ti ternary bulk metallic glasses correlated with (L → Cu8Zr3 + Cu10Zr7) univariant eutectic reaction. J. Mater. Res. 23, 51249 2008CrossRefGoogle Scholar
33.Dai, C.L., Guo, H., Li, Y., Xu, J.: A new composition zone of bulk metallic glass formation in the Cu–Zr–Ti ternary system and its correlation with the eutectic reaction. J. Non-Cryst. Solids 354, 3659 2008CrossRefGoogle Scholar
34.Zhang, W., Inoue, A.: High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system. J. Mater. Res. 21, 234 2006CrossRefGoogle Scholar
35.Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 1995CrossRefGoogle ScholarPubMed
36.Busch, R., Bakke, E., Johnson, W.L.: Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725 1998CrossRefGoogle Scholar
37.Shadowspeaker, L., Busch, R.: On the fragility of Nb–Ni-based and Zr-based bulk metallic glasses. Appl. Phys. Lett. 85, 2508 2004CrossRefGoogle Scholar
38.Bsenko, L.: Crystallographic data for intermediate phases in the copper-zirconium and copper-hafnium systems. J. Less-Common Met. 40, 365 1975CrossRefGoogle Scholar
39.JCPDS No. 18-0440. International Center for Diffraction Data: Newton Square, PA, 1995Google Scholar
40.Biloni, H., Boettinger, W.J.: SolidificationPhysical Metallurgy 4th ed., edited by Cahn, R.W. Haasen, P. Elsevier Science BV, Switzerland 1996 763Google Scholar
41.Hofmann, D.C., Duan, G., Johnson, W.L.: TEM study of structural evolution in a copper mold cast Cu46Zr54 bulk metallic glass. Scr. Mater. 54, 1117 2006CrossRefGoogle Scholar
42.Shen, Y., Ma, E., Xu, J.: A group of Cu(Zr)-based BMGs with critical diameter in the range of 12 to 18 mm. J. Mar. Sci. Technol. 24, 149 2008Google Scholar
43.Handbook of Ternary Alloy Phase Diagrams edited by Villars, P. Prince, A. Okamoto, H. ASM International Publishing 1995 3219Google Scholar
44.Zheng, Q., Xu, J., Ma, E.: High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys. J. Appl. Phys. 102, 113519 2007CrossRefGoogle Scholar
45.Gallino, I., Shah, M.B., Busch, R.: Enthalpy relaxation and its relation to the thermodynamics and crystallization of the Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass-forming alloy. Acta Mater. 55, 1367 2007CrossRefGoogle Scholar
46.Zhu, Z.W., Zhang, H.F., Pan, D.G., Sun, W.S., Hu, Z.Q.: Fabrication of binary Ni–Nb bulk metallic glass with high strength and compressive plasticity. Adv. Eng. Mater. 8, 953 2006CrossRefGoogle Scholar
47.Yokoyama, Y., Fredriksson, H., Yasuda, H., Nishijima, M., Inoue, A.: Glassy solidification criterion of Zr50Cu40Al10 alloy. Mater. Trans. 48, 1363 2007CrossRefGoogle Scholar
48.Boettinger, W.J.: Growth kinetic limitations during rapid solidificationRapidly Solidified Amorphous and Crystalline Alloys edited by Kear, B.H. Giessen, B.C. Cohen, M. Elsevier Science Publishing 1982 15Google Scholar
49.Fundamentals of Solidification 4th revised ed., edited by Kurz, W. Fisher, D.J Trans Tech Publications Ltd. Switzerland 1998 93Google Scholar
50.Li, Y.: Bulk metallic glasses: Eutectic coupled zone and amorphous formation. JOM 57, 60 2005CrossRefGoogle Scholar
51.Busch, R., Schroers, J., Wang, W.H.: Thermodynamics and kinetics of bulk metallic glass. MRS Bull. 32, 620 2007CrossRefGoogle Scholar
52.Lin, X.H., Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 1995CrossRefGoogle Scholar
53.Ohsaka, K., Chung, S.K., Rhim, W.K., Peker, A., Scruggs, D., Johnson, W.L.: Specific volumes of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy in the liquid, glass, and crystalline states. Appl. Phys. Lett. 70, 726 1997CrossRefGoogle Scholar
54.Hays, C.C., Schroers, J., Johnson, W.L., Rathz, T.J., Hyers, R.W., Rogers, J.R., Robinson, M.B.: Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3. Appl. Phys. Lett. 79, 1605 2001CrossRefGoogle Scholar
55.Busch, R., Liu, W., Johnson, W.L.: Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83, 4134 1998CrossRefGoogle Scholar
56.Inoue, A., Nakamura, T., Nishiyama, N., Masumoto, T.: Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. Trans., JIM 33, 937 1992CrossRefGoogle Scholar
57.Senkov, O.N.: Correlation between fragility and glass forming ability of metallic alloys. Phys. Rev. B 76, 104202 2007CrossRefGoogle Scholar
58.Zhang, Z.X., Dai, C.L., Xu, J.: Complete composition tunability of Cu(Ni) –Ti–Zr alloys for bulk metallic glass formation. J. Mater. Sci. Technol. 25, 2009 (in press)Google Scholar