Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T04:06:07.112Z Has data issue: false hasContentIssue false

Comparative study on the influence of the content and functionalization of alginate matrices on K-562 cell viability and differentiation

Published online by Cambridge University Press:  19 May 2020

Everton C. Morais
Affiliation:
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre 91500-000, Brazil
Helena T. Schroeder
Affiliation:
Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90046-902, Brazil
Cristina S. Souza
Affiliation:
Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90046-902, Brazil
Silvia R. Rodrigues
Affiliation:
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre 91500-000, Brazil
Maria Ines L. Rodrigues
Affiliation:
Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90046-902, Brazil
Paulo Ivo Homem de Bittencourt Jr.*
Affiliation:
Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90046-902, Brazil
João Henrique Z. Dos Santos*
Affiliation:
Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre 91500-000, Brazil
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Microencapsulation of functioning cells for transplantation therapies is particularly promising, but the cells must retain their proper physiology and viability after being encapsulated. K-562 cells are multipotential and exhibit erythroid, megakaryocytic, or granulocytic properties that can be exploited by using an array of physiologically differentiating factors. The potential for cell differentiation makes it attractive the use of K-562 cells as functional model to the assessment of the effects of encapsulation on cell viability and physiology. Thus, alginate and hybrid alginate matrices were produced by extrusion technique for K-562 cell encapsulation. The produced systems were composed of bare alginate (1–3 wt%) and alginate in combination with chitosan or silica. The resulting materials were characterized by dynamic laser scattering, zeta potential measurements, small-angle X-ray scattering, and Fourier transform infrared spectroscopy. To assess viability, the encapsulated cells were subjected to the Trypan blue exclusion technique and NAD(P)H-dependent oxidoreductase (MTT) assays; hemin-induced erythroid differentiation capacity was also evaluated. The encapsulated alginate-based systems were shown to be monomodal and bimodal, depending on the nature of the capsule, with mean sizes in the range between 414 and 4.129 nm. Encapsulated cells exhibited viability ratios compatible with their use for prolonged cell cultures. Erythroid differentiation occurred in the range between 39 and 44%. The present results allow the consideration of the viability of therapeutic cells encapsulated in both bare alginate and in hybrid matrices.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Newsholme, P., Cruzat, V.F., Keane, K.N., Carlessi, R., and Homem de Bittencourt, P.I. Jr: Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 473, 4527 (2016).CrossRefGoogle ScholarPubMed
Keane, K.N., Cruzat, V.F., Carlessi, R., Homem de Bittencourt, P.I. Jr, and Newsholme, P.: Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid. Med. Cell. Longevity 2015, 115 (2015).CrossRefGoogle ScholarPubMed
Carlessi, R.M., Chen, Y., Rowlands, J., Cruzat, V.F., Keane, K.N., Eagan, L., Mamotte, R., Stokes, R., Gunton, J.E., Homem de Bittencourt, P.I. Jr, and Newsholme, P.: GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation. Sci. Rep. 7, 2661 (2017).CrossRefGoogle ScholarPubMed
Richardson, T., Kumta, P.N., and Banerjee, I.: Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng., Part A 20, 3198 (2014).CrossRefGoogle ScholarPubMed
Boido, M., Ghibaudi, M., Gentile, P., Favaro, E., Fusaro, R., and Tonda-Turo, C.: Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment. Sci. Rep. 9, 1 (2019).CrossRefGoogle ScholarPubMed
Komeri, R. and Muthu, J.: Injectable, cytocompatible, elastic, free radical scavenging, and electroconductive hydrogel for cardiac cell encapsulation. Colloids Surf., B 157, 381 (2017).CrossRefGoogle ScholarPubMed
Wang, J., Ding, Z., Zhang, F., and Ye, W.: Recent development in cell encapsulations and their therapeutic applications. Mater. Sci. Eng., C 77, 1247 (2017).CrossRefGoogle ScholarPubMed
Lee, J.W., An, H., and Lee, K.Y.: Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation. Colloids Surf., B 155, 229 (2017).CrossRefGoogle ScholarPubMed
Xu, J., He, Y., Ma, J., and Ye, Q.: Coating a shell on alginate microsphere by liquid phase deposition. Mater. Lett. 188, 152 (2017).CrossRefGoogle Scholar
Suarez-Arnedo, A., Narváez, D.M., Sarmiento, P., Bocanegra, L., Salcedo, F., Muñoz-Camargo, C., Groot, H., and Cruz, J.C.: Tridimensional alginate disks of tunable topologies for mammalian cell encapsulation. Anal. Biochem. 574, 31 (2019).CrossRefGoogle ScholarPubMed
Choe, G., Kim, S., Park, J., Park, J., Kim, S., Kim, Y.S., Ahn, Y., Jung, D., Williams, D.R., and Lee, J.Y.: Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials 225, 1 (2019).CrossRefGoogle ScholarPubMed
dos Santos, V.H., Pfeifer, J.P.H., de Souza, J.B., Stievani, F.C., Hussni, C.A., Golim, M.A., Deffune, E., and Alves, A.L.G.: Evaluation of alginate hydrogel encapsulated mesenchymal stem cell migration in horses. Res. Vet. Sci. 124, 38 (2019).CrossRefGoogle Scholar
Qiao, P., Wang, J., Xie, Q., Li, F., Dong, L., and Xu, T.: Injectable calcium phosphate–alginate–chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Mater. Sci. Eng., C 33, 4633 (2013).CrossRefGoogle ScholarPubMed
Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K., and Kim, S.: Alginate composites for bone tissue engineering: A review. Int. J. Biol. Macromol. 72, 269 (2014).CrossRefGoogle ScholarPubMed
Valente, J.F.A., Valente, T.A.M., Alves, P., Ferreira, P., Silva, A., and Correia, I.J.: Alginate based scaffolds for bone tissue engineering. Mater. Sci. Eng., C 32, 2596 (2012).CrossRefGoogle Scholar
Grigore, A., Sarker, B., Fabry, B., Boccaccini, A.R., and Detsch, R.: Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. Tissue Eng., Part A 20, 2140 (2014).CrossRefGoogle ScholarPubMed
Santos, E., Pedraz, J.L., Hernández, R.M., and Orive, G.: Therapeutic cell encapsulation: Ten steps towards clinical translation. J. Control. Release 170, 1 (2013).CrossRefGoogle ScholarPubMed
Naghizadeh, Z., Karkhaneh, A., and Khojasteh, A.: Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Mater. Sci. Eng., C 89, 256 (2018).CrossRefGoogle ScholarPubMed
Kosik, A., Luchowska, U., and Święszkowski, W.: Electrolyte alginate/poly-L-lysine membranes for connective tissue development. Mater. Lett. 184, 104 (2016).CrossRefGoogle Scholar
King, A., Sandler, S., and Andersson, A.: The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J. Biomed. Mater. Res. 57, 374 (2001).3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Clayton, H.A., London, N.J., Colloby, P.S., Bell, P.R., and James, R.F.: The effect of capsule composition on the biocompatibility of alginate-poly-l-lysine capsules. J. Microencapsul. 8, 221 (1991).CrossRefGoogle ScholarPubMed
Coradin, T., Nassif, N., and Livage, J.: Silica–alginate composites for microencapsulation. Appl. Microbiol. Biotechnol. 61, 429 (2003).CrossRefGoogle ScholarPubMed
Hanahan, D. and Weinberg, R.A.: Hallmarks of cancer: The next generation. Cell 144, 646 (2011).CrossRefGoogle ScholarPubMed
Huo, X.F., Yu, J., Peng, H., Du, Z.W., Liu, X.L., Ma, Y.N., Zhang, X., Zhang, Y., Zhao, H.L., and Zhang, J.W.: Differential expression changes in K562 cells during the hemin-induced erythroid differentiation and the phorbol myristate acetate (PMA)-induced megakaryocytic differentiation. Mol. Cell. Biochem. 292, 155 (2006).CrossRefGoogle ScholarPubMed
Green, A.R., Rockman, S., DeLuca, E., and Begley, C.G.: Induced myeloid differentiation of K562 cells with downregulation of erythroid and megakaryocytic transcription factors: A novel experimental model for hemopoietic lineage restriction. Exp. Hematol. 21, 525 (1993).Google ScholarPubMed
Balan, B., Trifkovi, K., SorCevi, V., Markovi, S., Pjanovi, R., Nedovi, V., and Burgaski, B.: Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocolloids 61, 832 (2016).CrossRefGoogle Scholar
Colthup, N.B.: Introduction to Infrared and Raman Spectroscopy (Academic Press, New York, 1964).Google Scholar
Morais, E.C., Brambilla, R., Correa, G.G., Dalmoro, V., and Z Santos, J.H.: Imprinted silicas for paracetamol preconcentration prepared by the sol–gel process. J. Sol-Gel Sci. Technol. 83, 90 (2017).CrossRefGoogle Scholar
Mazzitelli, S., Capretto, L., Quinci, F., Piva, R., and Nastruzzi, C.: Preparation of cell-encapsulation devices in confined microenvironment. Adv. Drug Deliv. Rev. 65, 1533 (2013).CrossRefGoogle ScholarPubMed
Simó, G., Fernández-Fernández, E., Vila-Crespo, J., Ruipérez, V., and Rodríguez-Nogales, J.M.: Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr. Polym. 170, 1 (2017).CrossRefGoogle ScholarPubMed
Strober, W.: Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 3, A.3B.1–A.3B.2 (2001).CrossRefGoogle ScholarPubMed
Lozzio, C.B. and Lozzio, B.B.: Human chronic myelogenous leukemia cell line with positive philadelphia chromosoma. Blood 45, 321 (1975).CrossRefGoogle Scholar
Koeffler, H.P. and Golde, D.W.: Human myeloid leukemia cell lines–A review. Blood 56, 344 (1980).CrossRefGoogle ScholarPubMed
Erard, F., Dean, A., and Schechter, A.N.: Inhibitors of cell division reversibly modify hemoglobin concentration in human erythroleukemia K-562 cells. Blood 58, 1236 (1981).CrossRefGoogle Scholar
Luisi-De Luca, C., Mitchell, T., Spriggs, D., and Kufe, D.: Induction of terminal differentiation in human K-562 erythroleukemia cells by arabinofuranosyl cytosine. J. Clin. Invest. 74, 821 (1984).CrossRefGoogle Scholar
Rowley, P.T., Ohlson-Wilhem, B.M., Farley, B.A., and La Bella, S.: Inducers of erythroid differentiation in K-562 human leukemia cells. Expl. Hematol. 9, 32 (1981).Google Scholar
Todokoro, K., Kanazawa, S., Amanuma, H., and Ikawa, Y.: Specific binding of erythropoietin to its receptor on responsive mouse erythroleukemia cells. Proc. Natl. Acad. Sci. U. S. A. 84, 4126 (1987).CrossRefGoogle ScholarPubMed
Zhang, S., Xu, K., Darabi, M.A., Yuan, Q., and Xing, M.: Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. Mater. Sci. Eng. C 69, 496 (2016).CrossRefGoogle ScholarPubMed
Lin, S.C-Y., Wang, Y., Wertheim, D.F., and Coombes, A.G.A.: Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair. Mater. Sci. Eng., C 73, 653 (2017).CrossRefGoogle ScholarPubMed
Bing, F.C. and Baker, R.W.: The determination of hemoglobin in minute amounts of blood by Wu's method. J. Biol. Chem. 92, 589 (1931).Google Scholar
Knowles, R.G., Salter, M., Brooks, S.L., and Moncada, S.: Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem. Biophys. Res. Commun. 172, 1042 (1990).CrossRefGoogle ScholarPubMed
Mohanty, S., Wu, Y., Chakraborty, N., Mohanty, P., and Ghosh, G.: Impact of alginate concentration on the viability, cryostorage, and angiogenic activity of encapsulated fibroblasts. Mater. Sci. Eng., C 65, 269 (2016).CrossRefGoogle ScholarPubMed
Supplementary material: Image

Morais et al. Supplementary Materials

Morais et al. Supplementary Materials

Download Morais et al. Supplementary Materials(Image)
Image 159.2 KB