Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T22:23:55.016Z Has data issue: false hasContentIssue false

A comparative study on as-deposited and in situ oxidized ZnO/diamondlike carbon (DLC) nanocomposite by pulsed laser deposition technique

Published online by Cambridge University Press:  31 January 2011

Daniel H.C. Chua*
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

As-deposited ZnO/diamondlike carbon (DLC) was prepared using the laser ablation technique on ZnO/C targets, and in situ oxidized ZnO/DLC was prepared by using the same technique, but with the presence of oxygen on Zn/C targets. Transmission electron microscopy showed that ZnO/DLC films were obtainable by using both methods, but only in situ oxidized ZnO/DLC films showed the ultraviolet absorption at ˜370 nm. In situ oxidized films are highly sp3-bonded and rougher than as-deposited films, but as-deposited films are mechanically harder, stiffer, and have higher adhesion strength than in situ oxidized films. X-ray photoelectron spectroscopy revealed that a lower fraction of SiC, but a higher fraction of sp3 bonding was formed in the in situ oxidized ZnO/DLC. This hinted that the presence of oxygen might have scattered the plume’s expansion and reduced the energy possessed by the ions, thus reducing the graphitization and the formation of SiC in DLC matrix. Hence, by altering the deposition mechanism during laser ablation, ZnO/DLC films with modified material properties can be tailored.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.J., Morkoç, H.A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
2.Cheng, A.J., Wang, D., Seo, H.W., Liu, C., Park, M., Tzeng, Y.Cold cathodes for applications in poor vacuum and low pressure air environments: Carbon nanotubes versus ZnO nanoneedles. Diamond Relat. Mater. 15, 426 (2006)CrossRefGoogle Scholar
3.Yang, C., Zeng, Z., Chen, Z., Liu, J., Zhang, S.Characterization of ZnO thin films deposited on diamond-like carbon coated onto Si and SiO2/Si substrate. J. Cryst. Growth 293, 299 (2006)CrossRefGoogle Scholar
4.Ryu, Y.R., Zhu, S., Wrobel, J.M., Jeong, H.M., Miceli, P.F., White, H.W.Comparative study of textured and epitaxial ZnO films. J. Cryst. Growth 216, 326 (2000)CrossRefGoogle Scholar
5.Hong, K.J., Jeong, T.S.Growth and optical absorption spectra of ZnO films grown by pulsed laser deposition. J. Cryst. Growth 280, 545 (2005)CrossRefGoogle Scholar
6.Eriksson, J., Khranovskyy, V., Söderlind, F., Käll, P.O., Yakimova, R., Spetz, A.L.ZnO nanoparticles or ZnO films: A comparison of the gas sensing capabilities. Sens. Actuators, B 137, 94 (2009)CrossRefGoogle Scholar
7.Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H., Lee, H.J.Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648 (2002)CrossRefGoogle Scholar
8.Hsieh, J., Chua, D.H.C., Tay, B.K., Teo, E.H.T., Tanemura, M.Monochromatic photoluminescence obtained from embedded ZnO nanodots in an ultrahard diamond-like carbon matrix. Diamond Relat. Mater. 17, 167 (2008)CrossRefGoogle Scholar
9.Park, S.M., Ikegami, T., Ebihara, K.Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 513, 90 (2006)CrossRefGoogle Scholar
10.Nakamura, S., Senoh, M., Nakahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., Kiyoku, H.Ridge-geometry InGaN multi-quantum-well-structure laser diodes. Appl. Phys. Lett. 69, 1477 (1996)CrossRefGoogle Scholar
11.Wei, X.Q., Zhang, Z., Yu, Y.X., Man, B.Y.Comparative study on structural and optical properties of ZnO thin films prepared by PLD using ZnO powder target and ceramic target. Opt. Laser Technol. 41, 530 (2009)CrossRefGoogle Scholar
12.Wang, Z.L.Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 16, R829 (2004)CrossRefGoogle Scholar
13.Oshima, T., Ikegami, T., Ebihara, K., Thareja, R.K.Photo-excited photonic characteristics of ZnO thin films deposited by laser ablation method. Electr. Eng. Jpn. 144, 3 (2003)Google Scholar
14.Grill, A., Patel, V.Characterization of diamond-like carbon by infrared spectroscopy? Appl. Phys. Lett. 60, 2089 (1992)CrossRefGoogle Scholar
15.Robertson, J.Diamond-like amorphous carbon. Mater. Sci. Eng., R 37, 129 (2002)CrossRefGoogle Scholar
16.Chen, L.Y., Hong, F.C.N.Diamond-like carbon nanocomposite films. Appl. Phys. Lett. 82, 3526 (2003)CrossRefGoogle Scholar
17.Misra, P., Bhattacharya, P., Mallik, K., Rajagopalan, S., Kukreja, L.M., Rustagi, K.C.Variation of bandgap with oxygen ambient pressure in MgxZn1−xO thin films grown by pulsed laser deposition. Solid State Commun. 117, 673 (2001)CrossRefGoogle Scholar
18.Bolgiaghi, D., Miotello, A., Mosaner, P., Ossi, P.M., Radnoczi, G.Pulsed laser deposition of glass-like cluster assembled carbon films. Carbon 43, 2122 (2005)CrossRefGoogle Scholar
19.Kundoo, S., Saha, P., Chattopadhyaya, K.K.Synthesis of tin-incorporated nanocomposite diamond-like carbon films by plasma enhanced chemical vapor deposition and their characterization. J. Vac. Sci. Technol., B 22, 2709 (2004)CrossRefGoogle Scholar
20.Pappas, D.L., Saenger, K.L., Bruley, J., Krakow, W., Cuomo, J.J., Gu, T., Collins, R.W.Pulsed laser deposition of diamond-like carbon films. J. Appl. Phys. 71, 5675 (1992)CrossRefGoogle Scholar
21.Puretzky, A.A., Geohegan, D.B., Jellison, G.E. Jr., McGibbon, M.M.Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition. Appl. Surf. Sci. 96–98, 859 (1996)CrossRefGoogle Scholar
22.Gupta, V., Sreenivas, K.Pulsed laser deposition of zinc oxide (ZnO)Zinc Oxide Bulk, Thin Films and Nanostructures edited by C. Jagadish and S. Pearton (Elsevier Limited, Amsterdam, The Netherlands 2006)8788Google Scholar
23.Garcia, M.O., Rojas, R.M., Vila, E., Martin De Vidales, J.L.Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts. Solid State Ionics 63, 442 (1993)Google Scholar
24.Wang, H., Xie, C.The effects of oxygen partial pressure on the microstructures and photocatalytic property of ZnO nanoparticles. Physica E 40, 2724 (2008)CrossRefGoogle Scholar
25.Fan, J.C.C., Goodenough, J.B.X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J. Appl. Phys. 48, 3524 (1977)CrossRefGoogle Scholar
26.Linsebigler, A.L., Lu, G., Yates, J.T. Jr.Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
27.Kim, D., Jang, H.S., Kim, Y.S., Choi, D.H., Choi, B.K., Lee, J.H., You, Y.Z., Chun, H.G.Growth and characteristics of diamond-like carbon (DLC) films deposited by direct negative carbon ion beam deposition. Nucl. Instrum. Methods Phys. Res., Sect. B 254, 93 (2007)CrossRefGoogle Scholar
28.Jouan, P-Y., Peignon, M-C., Cardinaud, Ch., Lempérière, G.Characterisation of TiN coatings and of the TiN/Si interface by x-ray photoelectron spectroscopy and Auger electron spectroscopy. Appl. Surf. Sci. 68, 595 (1993)CrossRefGoogle Scholar
29.Pan, H., Yi, J.B., Shen, L., Wu, R.Q., Yang, J.H., Lin, J.Y., Feng, Y.P., Ding, J., Van, L.H., Yin, J.H.Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett. 99, 127201 (2007)CrossRefGoogle ScholarPubMed
30.Zhou, X., Li, Y., Peng, T., Xie, W., Zhao, X.Synthesis, characterization and its visible-light-induced photocatalytic property of carbon doped ZnO. Mater. Lett. 63, 1747 (2009)CrossRefGoogle Scholar
31.Bhat, S.V., Vivekchand, S.R.C., Govindaraj, A., Rao, C.N.R.Photoluminescence and photoconducting properties of ZnO nanoparticles. Solid State Commun. 149, 510 (2009)CrossRefGoogle Scholar
32.Cheung, J.T.Pulsed laser depositionHandbook of Vacuum Science and Technology edited by D.M. Hoffman, B. Singh,and J.H. Thomas, III (Academic Press, San Diego, CA 1998)700Google Scholar
33.Warrender, J.M., Aziz, M.J.Kinetic energy effects on morphology evolution during pulsed laser deposition of metal-on-insulator films. Phys. Rev. B 75, 085433 (2007)CrossRefGoogle Scholar
34.Yatsuzuka, M., Oka, Y., Nishijima, M., Hiraga, K.Microstructure of interface for high-adhesion DLC film on metal substrates by plasma-based ion implantation. Vacuum 83, 190 (2009)CrossRefGoogle Scholar
35.Lifshitz, Y., Kasi, S.R., Rabalais, J.W.Subplantation model for film growth from hyperthermal species: Application to diamond. Phys. Rev. Lett. 62, 1290 (1989)CrossRefGoogle ScholarPubMed
36.Willmott, P.R., Huber, J.R.Pulsed laser vaporization and deposition. Rev. Mod. Phys. 72, 315 (2000)CrossRefGoogle Scholar
37.Massey, H.S.W., Gilbody, H.B.Electronic and Ionic Impact Phenomena Vol. 4 (Oxford University, London 1974)Google Scholar
38.Tong, L., Mehregany, M., Matus, L.G.Mechanical properties of 3C silicon carbide. Appl. Phys. Lett. 60, 2992 (1992)CrossRefGoogle Scholar
39.Zhao, X., He, X., Sun, Y., Yi, J., Xiao, P.Superhard and tougher SiC/diamond-like-carbon composite films produced by electron beam physical vapour deposition. Acta Mater. 57, 893 (2009)CrossRefGoogle Scholar
40.Sheeja, D., Tay, B.K., Lau, S.P., Shi, X.Tribological properties and adhesive strength of DLC coatings prepared under different substrate bias voltages. Wear 249, 433 (2001)CrossRefGoogle Scholar
41.Grill, A.Friction in diamond-like a-CProperties of Amorphous Carbon edited by S.R.P. Silva (INSPEC, The Institution of Electrical Engineer, London, UK 2003)164165Google Scholar
42.Foong, Y.M., Hsieh, J., Li, X., Chua, D.H.C.The study on the effect of erbium on diamond-like carbon deposited by pulsed laser deposition technique. J. Appl. Phys. 106, 064904 (2009)CrossRefGoogle Scholar