Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T16:29:28.807Z Has data issue: false hasContentIssue false

Comparative study of vertical gradient freeze grown CdTe with variable Sn concentration

Published online by Cambridge University Press:  01 April 2006

J. Franc*
Affiliation:
Charles University, Faculty of Mathematics and Physics, Institute of Physics,Prague CZ 121 16, Czech Republic
H. Elhadidy
Affiliation:
Charles University, Faculty of Mathematics and Physics, Institute of Physics,Prague CZ 121 16, Czech Republic
V. Babentsov
Affiliation:
Institute for Semiconductor Physics, Kiev 03028, Ukraine
A. Fauler
Affiliation:
Materialforschungszentrum, Freiburg D-79104, Germany
M. Fiederle
Affiliation:
Materialforschungszentrum, Freiburg D-79104, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Four CdTe ingots with gradually increased concentration of the Sn impurity have been grown by the vertical gradient freeze method and were characterized with glow discharge mass spectroscopy, photoinduced current transient spectroscopy, resistivity, photoconductivity, and photoluminescence techniques. It was shown that the Sn impurity strongly influences resistivity and photoconductivity of the material. Concentration of Sn must be higher than the total concentration of residual acceptors to reach strong compensation. The middle-gap donor level pins the Fermi-level. Photoconductive high resistivity material can be prepared with Sn concentrations in the melt in the range 1018–1019 cm−3. In total, 6 electron traps and 3 hole traps were identified in the band gap by several complementary techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Limousin, O.: New trends in CdTe and CdZnTe detectors for X- and gamma-ray applications. Nucl. Instrum. Methods A 504, 24 (2003).CrossRefGoogle Scholar
2.Schlesinger, T.E., Toney, J.E., Yoon, H., Lee, E.Y., Brunett, B.A., Franks, L., James, R.B.: Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R32, 103 (2001).CrossRefGoogle Scholar
3.Rudolph, P., Mühlberg, M.: Basic problems of vertical Bridgman growth of CdTe. Mater. Sci. Eng. B16, 8 (1993).CrossRefGoogle Scholar
4.Kröger, F.A.: The defect structure of CdTe. Rev. Phys. Applique 12, 205 (1977).CrossRefGoogle Scholar
5.Mochizuki, K.: Growth of CdTe from Te excess solution and self-compensation of doped donor. J. Cryst. Growth 214/215, 9 (2000).CrossRefGoogle Scholar
6.Nobel, De: Phase equilibria and semiconducting properties of cadmium telluride. Philips Res. Rep. 14, 361 (1959).Google Scholar
7.Matveev, O.A., Terentev, A.I.: Basic principles of postgrowth annealing of CdTe: Cl ingot to obtain semi-insulating crystals. Semiconductors 34, 1316 (2000).CrossRefGoogle Scholar
8.Fiederle, M., Eiche, C., Salk, M., Schwarz, R., Benz, K.W., Stadler, W., Hofman, D.M., Meyer, B.K.: Modified compensation model of CdTe. J. Appl. Phys. 84, 6689 (1998).CrossRefGoogle Scholar
9.Brunthaler, G., Jantsch, W., Kaufmann, U., Schneider, J.: Electron-spin-resonance analysis of the deep donors lead, tin, and germanium in CdTe. Phys. Rev. B 31, 1239 (1985).CrossRefGoogle Scholar
10.Jantsch, W., Hendorfer, G.: Characterization of deep levels in CdTe by photo-EPR and related techniques. J. Cryst. Growth 101, 404 (1990).CrossRefGoogle Scholar
11.Savitskii, A.V., Tovstyuk, K.D., Panchuk, O.E.: Impurity interaction in CdTe dynamic lattice. Sov. Phys. Solid State 27, 1956 (1985).Google Scholar
12.Fochuk, P.M., Shcherbak, L.P., Feichuk, P.I., Panchuk, O.E.: Distribution of Ga in CdTe. Inorg. Mater. 31, 1408 (1995).Google Scholar
13.Illgner, M., Overhof, H.: Electronic structure and hyperfine interactions for deep donors and vacancies in II-VI compound semiconductors. Phys. Rev. B 54, 2505 (1996).CrossRefGoogle ScholarPubMed
14.Savitskii, A.V., Parfenyuk, O.A., Ilaschukm, M.I., Pavlin, P.A.: Compensating effect of lead impurity of CdTe. Inorg. Mater. 25, 1567 (1989).Google Scholar
15.Gorlei, P.N., Parfenyuk, O.A., Ilaschuk, M.I., Ulyanitskii, K.S., Burachek, V.R., Chupyra, S.N.: Photosensitive centers in CdTe < Ge >, CdTe < Sn >, and CdTe < Pb >. Inorg. Mater. 39, 1127 (2003).CrossRefGoogle Scholar
16.Savitskii, V., Parfenyuk, O.A., Ilashchuk, M.I., Ulyanitskii, K.S., Savchuk, A.I., Gorley, P.M.: Photoelectric properties of CdTe: Sn semiinsulating crystals. Opt. Mater. 18, 167 (2001).CrossRefGoogle Scholar
17.Panchuk, O., Savitskiy, A., Fochuk, P., Nykonyuk, Y., Parfenyuk, O., Shcherbak, L., Lashchuk, M., Latsunyuk, L., Feychuk, P.: IV group dopant compensation effect in CdTe. J. Cryst. Growth 197, 607 (1999).CrossRefGoogle Scholar
18.Fiederle, M., Babentsov, V., Franc, J., Fauler, A., Benz, K.W., James, R.B., Cross, E.: Defect structure of Ge doped CdTe. J. Cryst. Growth 243, 77 (2002).CrossRefGoogle Scholar
19.Stibal, R., Windscheif, J., Jantz, W.: Contactless evaluation of semiinsulating GaAs wafer resistivity using time-dependent charge measurements. Semicond. Sci. Technol. 6, 995 (1991).CrossRefGoogle Scholar
20.Tapiero, M., Benjelloun, N., Zielinger, J.P., Hamd, S. El: Noguet, Photoinduced current transient spectroscopy in high-resistivity bulk materials – instrumentation and methodology. J. Appl. Phys. 64, 4006 (1988).CrossRefGoogle Scholar
21.Grosch, G.H., Freytag, B., Range, K.J., Rössler, U.: Stability of CdxSn1-xTe in rock-salt structure – a study of zero flux surfaces and bonding. J. Chem. Phys. 101, 6782 (1994).CrossRefGoogle Scholar
22.Freytag, B., Rössler, U., Karch, K., Grosch, G.H., Range, K.J.: Total energy calculation for CdxSn1–xTe. J. Chem. Phys. 99, 6751 (1993).CrossRefGoogle Scholar
23.Blackmore, G.W., Courtney, S.J., Royle, A., Shaw, N., Vere, A.W.: Boron segregation in Czochralski grown CdTe. J. Cryst. Growth 85, 335 (1987).CrossRefGoogle Scholar
24.Oldekop, E., Eyert, V., Niedermeyer, F., Wienecke, M., Zeitz, W.D.: The behavior of B-12 in CdTe studied with beta-NMR technique. Materials Science Application of Ion Beam Techniques Materials Science Forum 248, 267 (1997).Google Scholar
25.Pal, U., Fernandez, P., Piqueras, J., Sochinskii, N.V., Diéguez, E.: Cathodoluminescence characterization of Ge-doped CdTe crystals. J. Appl. Phys. 78, 1992 (1995).CrossRefGoogle Scholar
26.Castaldini, A., Cavallini, A., Fraboni, B., Fernandez, P., Piqueras, J.: Deep energy levels in CdTe and CdZnTe. J. Appl. Phys. 83, 2121 (1998).CrossRefGoogle Scholar
27.Stadler, W., Hofmann, D.M., Alt, H.C., Muschik, T., Meyer, B.K., Weigel, E., Müller-Vogt, G., Salk, M., Rupp, E., Benz, K.W.: Optical investigations of defects in Cd 1-xZn xTe. Phys. Rev. B 51, 10619 (1995).CrossRefGoogle Scholar
28.Yu, Zhonghai, Hofer, S.G., Giles, N.C., Myers, T.H., Summers, C.J.: Interpretation of near-band-edge photoreflectance spectra from CdTe. Phys. Rev. B 51, 13 789 (1995).CrossRefGoogle ScholarPubMed
29.Hage-Ali, M., Siffert, P.: Status of semi-insulating cadmium telluride for bnuclear radiation detectors. Nucl. Instr. Meth. A 322, 313 (1992).CrossRefGoogle Scholar
30.Szeles, Cs., Shan, Y.Y., Lynn, K.G., Moodenbaugh, A.R., Eissler, E.E.: Trapping properties of cadmium vacancies in Cd1-x ZnxTe. Phys. Rev. B 55, 6945 (1997).CrossRefGoogle Scholar
31.Emanuelsson, P., Omling, P., Meyer, B.K., Wienecke, M., Schenk, M.: Identification of the cadmium vacancy in CdTe by electron-paramagnetic resonance. Phys. Rev. B. 47, 15578 (1993).CrossRefGoogle ScholarPubMed
32.Rose, A.Concepts in photoconductivity and allied problems, (Robert E. Krieger Publishing, New York, 1978), p. 43.Google Scholar
33.Bube, R.H.Photoconductivity of solids, (John Wiley & Sons, New York, 1960), p. 325.Google Scholar
34.Mathew, X.: Photo-induced current transient spectroscopic study of the traps in CdTe. Sol. Energy Mater. Sol. Cells 76, 225 (2003).CrossRefGoogle Scholar
35.Ye, C.P., Chen, J.H.: Studies of defects in N-type CdTe by charge transient spectroscopy. J. Appl. Phys. 67, 2475 (1990).CrossRefGoogle Scholar
36.Kremer, R.E., Leigh, W.B.: Deep levels in CdTe. J. Cryst. Growth 86, 490 (1988).CrossRefGoogle Scholar
37.Neumark, G.F.: Defects in wide band gap II-VI crystals. Mater. Sci. Eng. R21, 1 (1997).Google Scholar
38.Fougeres, P., Siffert, P., Hage-Ali, M., Koebel, J.M., Regal, R.: CdTe and Cd1-xZnxTe for nuclear detectors: facts and fictions, Nucl. Instr. Methods Phys. Res. A 428, 38 (1999).CrossRefGoogle Scholar
39.Takebe, T., Saraie, J., Matsunami, H.: Detailed characterization of deep centers in CdTe-photoionization and thermal ionization properties. J. Appl. Phys. 53, 457 (1982).CrossRefGoogle Scholar
40.Sitter, H., As, D., Humenberger, J., Lopez-Otero, A.: Investigation of deep levels in epitaxially grown CdS and CdTe layers. J. Cryst. Growth 59, 229 (1982).CrossRefGoogle Scholar
41.Isett, L.C., Raychaudhuri, P.K.: Deep levels in CdTe. J. Appl. Phys. 55, 3605 (1984).CrossRefGoogle Scholar
42.Khattak, G.M., Scott, C.G.: Characterization of deep levels in N-type CdTe. J. Phys: Condens. Matter 3, 8619 (1991).Google Scholar
43.Eiche, C., Joerger, W., Fiederle, M., Ebling, D., Schwarz, R., Benz, K.W.: Investigation of CdTe:Cl grown from the vapor-phase under microgravity conditions with time dependent charge measurements and photoinduced current transient spectroscopy. J. Cryst. Growth 146, 98 (1995).CrossRefGoogle Scholar
44.Balcioglu, A., Ahrenkiel, R.K., Hasoon, F.: Deep-level impurities in CdTe/CdS thin-film solar cells. J. Appl. Phys. 88, 7175 (2000).CrossRefGoogle Scholar
45.Castaldini, A., Cavallini, A., Fraboni, B., Polenta, L., Fernandez, P., Piqueras, J.: Cathodoluminescence and photoinduced current spectroscopy studies of defects in Cd0.8Zn0.2Te. Phys. Rev. B 54, 7622 (1996).CrossRefGoogle ScholarPubMed
46.Cavallini, A., Fraboni, B., Dusi, W., Zanarini, M., Siffert, P.: Deep levels and compensation in gamma-irradiated CdZnTe. Appl. Phys. Lett. 77, 3212 (2000).CrossRefGoogle Scholar
47.Cavallini, A., Fraboni, B., Dusi, W., Auricchio, N., Chirco, P., Zanarini, M., Siffert, P., Fougeres, P.: Radiation effects on II-VI compound-based detectors. Nucl. Instrum. Method A476, 770 (2002).CrossRefGoogle Scholar
48.Bobrova, E.A., Klevkov, Yu.V., Medvedev, S.A., Plotnikov, A.F.: A DLTS study of deep levels in the band gap of textured stoichiometric p-CdTe polycrystals. Semiconductors 36, 1341 (2002).CrossRefGoogle Scholar