Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T01:48:49.286Z Has data issue: false hasContentIssue false

A comparative study of anodized titania nanotube architectures in aqueous and nonaqueous solutions

Published online by Cambridge University Press:  24 August 2011

Matthew R. Sturgeon
Affiliation:
Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6181
Peng Lai
Affiliation:
Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6181
Michael Z. Hu*
Affiliation:
Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6181
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The unique and highly utilized properties of TiO2 nanotubes are a direct result of nanotube architecture. To create different engineered architectures, the effects of electrolyte solution, time, and temperature on the anodization of titanium foil were studied along with the resultant anodized titanium oxide (ATO) nanotube architectures encompassing nanotube length, pore diameter, wall thickness, smoothness, and ordered array structure. Titanium foil was anodized in three different electrolyte solutions: one aqueous [consisting of NH4F and (NH4)2SO4] and two nonaqueous (glycerol or ethylene glycol, both containing NH4F) at varying temperatures and anodization times. Variation in anodization applied voltage, initial current, and effect of F ion concentration on ATO nanotube architecture was also studied. Anodization in the aqueous electrolyte produced short, rough nanotube arrays, whereas anodization in organic electrolytes produced long, smooth nanotube arrays greater than 10 μm in length. A position effect, relative to the solution–air interface, was observed in this work. Furthermore, it was found that anodization in glycerol at elevated temperatures for several hours could possibly produce freely dispersed individual nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., and Grimes, C.A.: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol. A 178, 8 (2006).CrossRefGoogle Scholar
2.Shankar, K., Paulose, M., Mor, G.K., Varghese, O.K., and Grimes, C.A.: A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays. J. Phys. D: Appl. Phys. 38, 3543 (2005).CrossRefGoogle Scholar
3.Ghicov, A., Tsuchiya, H., Macak, J.M., and Schmuki, P.: Annealing effects on the photoresponse of TiO2 nanotubes. Physica Status Solidi A 203, R28 (2006).Google Scholar
4.Ruan, C.M., Paulose, M., Varghese, O.K., and Grimes, C.A.: Enhanced photo electrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte. Sol. Energy Mater. Sol. Cells 90, 1283 (2006).CrossRefGoogle Scholar
5.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2004).CrossRefGoogle Scholar
6.Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K., and Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158 (2005).CrossRefGoogle ScholarPubMed
7.Hu, M.Z., Lai, P., Bhuiyan, M.S., Tsouris, C., Gu, B.H., Paranthaman, M.P., Gabitto, J., and Harrison, L.: Synthesis and characterization of anodized titanium-oxide nanotube arrays. J. Mater. Sci. 44, 2820 (2009).CrossRefGoogle Scholar
8.Mohapatra, S.K., Mahajan, V.K., and Misra, M.: Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting. Nanotechnology 18, (2007).CrossRefGoogle Scholar
9.Gong, J.J., Lai, Y.K., and Lin, C.J.: Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting. Electrochim. Acta 55, 4776 (2010).CrossRefGoogle Scholar
10.Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A., and Grimes, C.A.: Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110, 16179 (2006).CrossRefGoogle ScholarPubMed
11.Rani, S., Roy, S.C., Paulose, M., Varghese, O.K., Mor, G.K., Kim, S., Yoriya, S., LaTempa, T.J., and Grimes, C.A.: Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 12, 2780 (2010).CrossRefGoogle Scholar
12.Ghicov, A. and Schmuki, P.: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 20, 2791 (2009).CrossRefGoogle Scholar
13.Paulose, M., Shankar, K., Varghese, O.K., Mor, G.K., and Grimes, C.A.: Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D: Appl. Phys. 39, 2498 (2006).CrossRefGoogle Scholar
14.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).CrossRefGoogle ScholarPubMed
15.Varghese, O.K., Paulose, M., and Grimes, C.A.: Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4, 592 (2009).CrossRefGoogle ScholarPubMed
16.Albu, S.P., Ghicov, A., Macak, J.M., Hahn, R., and Schmuki, P.: Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 7, 1286 (2007).CrossRefGoogle ScholarPubMed
17.Ranney, E., Mansfield, J., Sun, K., and Schwank, J.: Effects of synthesis conditions on dimensions, structure, and oxygen content of photocatalytically active titania nanotubes. J. Mater. Res. 25, 89 (2010).CrossRefGoogle Scholar
18.Shankar, K., Basham, J.I., Allam, N.K., Varghese, O.K., Mor, G.K., Feng, X.J., Paulose, M., Seabold, J.A., Choi, K.S., and Grimes, C.A.: Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113, 6327 (2009).CrossRefGoogle Scholar
19.Varghese, O.K., Paulose, M., LaTempa, T.J., and Grimes, C.A.: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731 (2009).CrossRefGoogle ScholarPubMed
20.Gong, D., Grimes, C.A., Varghese, O.K., Hu, W.C., Singh, R.S., Chen, Z., and Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
21.Cai, Q.Y., Paulose, M., Varghese, O.K., and Grimes, C.A.: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005).CrossRefGoogle Scholar
22.Shankar, K., Mor, G.K., Fitzgerald, A., and Grimes, C.A.: Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide—Water mixtures. J. Phys. Chem. C 111, 21 (2007).CrossRefGoogle Scholar
23.Beranek, R., Hildebrand, H., and Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 6, B12 (2003).CrossRefGoogle Scholar
24.Macak, J.M., Sirotna, K., and Schmuki, P.: Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta. 50, 3679 (2005).CrossRefGoogle Scholar
25.Taveira, L.V., Macak, J.M., Tsuchiya, H., Dick, L.F.P., and Schmuki, P.: Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J. Electrochem. Soc. 152, B405 (2005).CrossRefGoogle Scholar
26.Tsuchiya, H., Macak, J.M., Ghicov, A., Taveira, L., and Schmuki, P.: Self-organized porous TiO2 and ZrO2 produced by anodization. Corros. Sci. 47, 3324 (2005).CrossRefGoogle Scholar
27.Macak, J.M., Tsuchiya, H., and Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 44, 2100 (2005).CrossRefGoogle ScholarPubMed
28.Macak, J., Taveira, L.V., Tsuchiya, H., Sirotna, K., and Schmuki, P.: Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. J. Electroceram. 16, 29 (2006).CrossRefGoogle Scholar
29.Taveira, L.V., Macak, J.M., Sirotna, K., Dick, L.F.P., and Schmuki, P.: Voltage oscillations and morphology during the galvanostatic formation of self-organized TiO2 nanotubes. J. Electrochem. Soc. 153, B137 (2006).CrossRefGoogle Scholar
30.Ghicov, A., Tsuchiya, H., Macak, J.M., and Schmuki, P.: Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem. Commun. 7, 505 (2005).CrossRefGoogle Scholar
31.Bauer, S., Kleber, S., and Schmuki, P.: TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochem. Commun. 8, 1321 (2006).CrossRefGoogle Scholar
32.Ruan, C.M., Paulose, M., Varghese, O.K., Mor, G.K., and Grimes, C.A.: Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B 109, 15754 (2005).CrossRefGoogle ScholarPubMed
33.Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., and Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, (2007).CrossRefGoogle Scholar
34.Prakasam, H.E., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111, 7235 (2007).CrossRefGoogle Scholar
35.Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., and Grimes, C.A.: TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion. J. Phys. Chem. C 111, 14992 (2007).CrossRefGoogle Scholar
36.Macak, J.M., Tsuchiya, H., Taveira, L., Aldabergerova, S., and Schmuki, P.: Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 44, 7463 (2005).CrossRefGoogle ScholarPubMed
37.Macak, J.M., Aldabergerova, S., Ghicov, A., and Schmuki, P.: Smooth anodic TiO2 nanotubes: Annealing and structure. Physica Status Solidi A 203, R67 (2006).Google Scholar
38.Tsuchiya, H., Macak, J.M., Taveira, L., Balaur, E., Ghicov, A., Sirotna, K., and Schmuki, P.: Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Commun. 7, 576 (2005).CrossRefGoogle Scholar
39.Macak, J.M. and Schmuki, P.: Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim. Acta 52, 1258 (2006).CrossRefGoogle Scholar
40.Macak, J.M., Albu, S.P., and Schmuki, P.: Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys. Status Solidi RPL 1, 181 (2007).CrossRefGoogle Scholar
41.Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., and Dickey, E.C.: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).CrossRefGoogle Scholar
42.Paulose, M., Varghese, O.K., Shankar, K., Mor, G.K., and Grimes, C.A.: Photoelectrochemical properties of highly-ordered titania nanotube-arrays, in Materials for Hydrogen Storage—2004, edited by Heben, M.J., Robertson, I.M., Stumpf, R., and Vogt, T. (Mater. Res. Soc. Symp. Proc. 837 Warrendale, PA, 2005) N3.13, p. 65.Google Scholar
43.Cao, C., Li, J., Wang, X., Song, X., and Sun, Z.: Current characterization and growth mechanism of anodic titania nanotube arrays. J. Mater. Res. 26, 437 (2011).CrossRefGoogle Scholar