Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T01:30:39.815Z Has data issue: false hasContentIssue false

Cohesive properties, electronic structure, and bonding characteristics of RuAl—A comparison to NiAl

Published online by Cambridge University Press:  31 January 2011

W. Lin
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112
Jian-hua Xu
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112
A.J. Freeman
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112
Get access

Abstract

Recent experiments on promising high-temperature aluminide intermetallic compounds discovered that, in contrast to NiAl, RuAl has critical 〈111〉 slip systems that facilitate ductility under compression at room temperature. In order to understand this different mechanical property from a microscopic point of view, the cohesive and electronic properties of NiAl and RuAl have been studied by means of the first principles local density all-electron self-consistent linearized muffin-tin orbital (LMTO) and full-potential linearized augmented plane wave (FLAPW) methods. The ground state cohesive properties calculated by the LMTO method (including equilibrium lattice constant, bulk modulus, and formation energy) are found to be in good agreement with experiment. The analysis of the band structure and density of states shows that the transition metal (Ni or Ru) d-Al p hybridization provides the major contribution to the cohesive energy in both compounds. The anti-phase boundary (APB) energy of RuAl associated with the ½〈111〉 {110} superdislocation (580 mJ/m2) is found to be only 65% that of NiAl. Moreover, the charge density near the Fermi energy reveals that (i) the strong Ni d-Al p hybridization at EF for NiAl causes a directional charge distribution along the 〈111〉 direction which may affect its dislocation dissociation; (ii) for RuAl, a mostly Ru-d electron charge distribution shows only d-d bonding along the 〈100〉 direction between Ru atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fleischer, R. L., Dimiduk, D. M., and Lipsitt, H. A., Annu. Rev. Mater. Sci. 19, 231 (1989).CrossRefGoogle Scholar
2.Fleischer, R. L., Field, R. D., and Briant, C. L., Metall. Trans. A 22, 403 (1991).Google Scholar
3.Ball, A. and Smallman, R. E., Acta Metall. 14, 1349 (1966); ibid., 14, 1517 (1966).CrossRefGoogle Scholar
4.Noebe, R. D., Bowman, R. R., Kim, J. T., Larsen, M., and Gibala, R., in High Temperature Aluminides and Intermetallics, edited by Whang, S. H., Liu, C. T., and Pope, D. (Metallurgical Society of AIME, Warrendale, PA, 1989), p. 271.Google Scholar
5.von Mises, R., Angew, Z.Math. Mech. 8, 161 (1928).Google Scholar
6.Vedula, K., in Alloy Phase Stability, edited by Stocks, G. M. and Gonis, A. (Kluwer, Norwell, MA, 1989), p. 29.Google Scholar
7.Vedula, K. and Stephens, J. R., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 381.Google Scholar
8. See, for example, Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (John Wiley & Sons, New York, 1982).Google Scholar
9.Hong, T. and Freeman, A. J., Phys. Rev. B 43, 6446 (1991).CrossRefGoogle Scholar
10.Cooper, M. J., Philos. Mag. 89, 811 (1963).CrossRefGoogle Scholar
11.Williams, A. R., Kübler, J., and Gelatt, C. D., Jr., Phys. Rev. B 19, 6094 (1979).Google Scholar
12.Darolia, R., Larhman, D. F., Field, R., and Freeman, A. J., in High-Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 113.Google Scholar
13.Miracle, D. B., Russell, S., and Law, C. C., in High-Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 225.Google Scholar
14.Darolia, R., JOM 43, 44 (1991).CrossRefGoogle Scholar
15.Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
16.Andersen, O. K., Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
17.Hedin, L. and Lundqvist, B. I., J. Phys. C. 4, 2064 (1971).CrossRefGoogle Scholar
18.Rath, J. and Freeman, A. J., Phys. Rev. B 11, 2109 (1979).Google Scholar
19.Jansen, H. J. F. and Freeman, A. J., Phys. Rev. B 30, 561 (1984).Google Scholar
20.Kubaschewski, O., Evans, E. L., and Alcock, C. B., Metallurgical Thermochemistry, 4th ed. (Pergamon Press, Oxford, 1967).Google Scholar
21.Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A. J., Phys. Rev. B 24, 864 (1981).Google Scholar
22.Xu, J-h., Lin, W., and Freeman, A. J., Phys. Rev. B 43, 2018 (1991).CrossRefGoogle Scholar
23.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1986).Google Scholar
24.Hackenbracht, D. and Küibler, J., J. Phys. F 10, 427 (1980).Google Scholar
25.Moruzzi, V. L., Williams, A. R., and Janak, J. F., Phys. Rev. B 10, 4856 (1974).CrossRefGoogle Scholar
26.Colinet, C., Bessoud, A., and Pasturel, A., J. Phys. C 1, 5837 (1989).Google Scholar
27.Manh, D. N., Mayou, D., Pasturel, A., and Cyrot-Lackman, F.,J. Phys. F 15, 1911 (1985).CrossRefGoogle Scholar
28.Yoo, M. H., Takasuga, T., Hanada, S., and Izumi, O., Mater. Trans. JIM, V 31, 435 (1990).CrossRefGoogle Scholar
29.Yoo, M. H., Horton, J. A., and Liu, C. T., Oak Ridge Report (1988).Google Scholar
30.Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., and Kelley, K. K., Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, OH, 1973).Google Scholar
31.Smithells Metals Reference Book, 6th ed., edited by Brandes, E. A. (Butterworth, London, 1983).Google Scholar
32.Lu, Z. W., Singh, D. J., and Krakauer, H., Phys. Rev. B 39, 4921 (1989).Google Scholar
33.Fu, C. L. and Yoo, M. H., Philos. Mag. Lett. 62, 159 (1990).Google Scholar
34.Yamagata, T., J. Phys. Soc. Jpn. 45, 1575 (1978).CrossRefGoogle Scholar
35.Potter, D. I., Mater. Sci. Eng. 5, 201 (1969/1970).Google Scholar
36.Clapp, P. C., Rubins, M. J., Charpenay, S., Rifkins, J. A., Yu, Z. Z., and Voter, A. F., in High-Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 29.Google Scholar
37.Crawford, R. C. and Ray, I. L. F., Philos. Mag. 35, 549 (1977).CrossRefGoogle Scholar
38.Eibler, R. and Neckel, A., J. Phys. F 10, 2179 (1980).CrossRefGoogle Scholar
39.Nilsson, P.O., Phys. Status Solidi 41, 317 (1970).Google Scholar
40.Carlsson, A. E., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 39.Google Scholar
41.Sarma, D. D., Speier, W., Zeller, R., van Leuken, E., de Groot, R. A., and Fuggle, J.C., J. Phys. C 1, 9131 (1989).Google Scholar
42.Begot, J. J., Caudron, R., Faivre, P., Lasalmonie, A., and Costa, P., J. Physique Lett. 35, L225 (1974).Google Scholar
43.Lui, S-C., Davenport, J. W., Plummer, E. W., Zehner, D. M., and Fernando, G. W., Phys. Rev. B 42, 1582 (1990).CrossRefGoogle Scholar
44.Peterman, D. J., Rosei, R., Lynch, D. W., and Moruzzi, V. L., Phys. Rev. B 21, 5505 (1980).Google Scholar
45.Müller, Ch., Wonn, H., Blau, W., Ziesche, P., and Krivitskii, V. P., Phys. Status Solidi (b) 95, 215 (1979).CrossRefGoogle Scholar