Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T13:13:22.224Z Has data issue: false hasContentIssue false

Coble-creep response and variability of grain-boundary properties

Published online by Cambridge University Press:  31 January 2011

W. S. Tong
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
J. M. Rickman
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
H. M. Chan
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
M. P. Harmer
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Get access

Abstract

A microstructural model of steady-state creep that couples grain-boundary transport, micromechanics, and grain sliding is employed to investigate the grain-boundary diffusional creep response of an idealized microstructure with variable boundary diffusivities. Both numerical and analytical methods were used to determine the stress state and, in some cases, the strain rate associated with an applied uniaxial, tensile stress. Various types of boundaries are considered, and the implications of our results for more general microstructures are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nabarro, F.R.N., Phil. Mag. 16, 75 (1948).Google Scholar
2.Herring, C., J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
3.Green, H.W. II , J. Appl. Phys. 41, 1679 (1970).Google Scholar
4.Burton, B., Trans Tech Publications, Diffusional Defect Monogr. Ser. (1977).Google Scholar
5.Lifshitz, I.M., Sov. Phys. JETP 14, 909 (1963).Google Scholar
6.Raj, R. and Ashby, M.F., Metall. Trans. 2, 113 (1971).CrossRefGoogle Scholar
7.Ashby, M.F., Surf. Sci. 31, 498 (1972).CrossRefGoogle Scholar
8.Ashby, M.F., Raj, R., and Gifkins, R.C., J. Am. Ceram. Soc. 71, 832 (1970).Google Scholar
9.Arieli, A. and Mukherjee, A.K., Mater. Sci. Eng. 45, 61 (1980).CrossRefGoogle Scholar
10.Ball, A. and Hutchison, M.M., J. Metal. Sci. 3, 1 (1969).CrossRefGoogle Scholar
11.Gittus, J.H.H., J. Eng. Mater. Tech. Ser. H, 99, 244 (1977).CrossRefGoogle Scholar
12.Hayden, H.W., Floreen, S., and Goodell, P.D., Metall. Trans. 3, 244 (1972).CrossRefGoogle Scholar
13.Coble, R.L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
14.Spingarn, J.R. and Nix, W.D., Acta Metall. 26, 1389 (1978).CrossRefGoogle Scholar
15.Schneibel, J.H., Coble, R.L., and Cannon, R.M., Acta Metall. 29, 1285 (1981).CrossRefGoogle Scholar
16.Hazzledine, P.M. and Schneibel, J.H., in Superplasticity in Metals, Ceramics, and Intermetallics, edited by Mayo, M.J., Kobayashi, M., and Wadsworth, J. (Mat. Res. Soc. Symp. Proc. 196, Pittsburgh, PA, 1990), p. 15.Google Scholar
17.Hazzledine, P.M. and Schneibel, J.H., Acta. Metall. Mater. 41, 1253 (1993).CrossRefGoogle Scholar
18.Borisov, V.T., Golikov, V.M., and Scherbedinskiy, G.V., Phys. Met. Metall. 17, 80 (1964).Google Scholar
19.Sutton, A.P. and Balluffi, R.W., Interfaces in Crystalline Materials (Claredon Press, Oxford, United Kingdom, 1995).Google Scholar
20.Li, Y., Wang, C., Chan, H.M., Rickman, J.M., and Harmer, M.P., J. Am. Ceram. Soc. 82, 1497 (1999).CrossRefGoogle Scholar
21.Cho, J., Harmer, M.P., Chan, H.M., Rickman, J.M., and Thompson, A.M., J. Am. Ceram. Soc. 80, 1013 (1997).CrossRefGoogle Scholar
22.Cho, J., Chan, H.M., Harmer, M.P., and Rickman, J.M., J. Am. Ceram. Soc. 81, 3001 (1998).CrossRefGoogle Scholar
23.Li, Y-Z, Wang, C., Chan, H.M., Rickman, J.M., Harmer, M.P., Chabala, J., Gavrilov, K.L., and Levi-Setti, R., J. Am. Ceram. Soc. 82, 1497 (1999).CrossRefGoogle Scholar
24.deGroot, S.R. and Mazur, P., Non-equilibrium Thermodynamics(North-Holland, New York, 1962).Google Scholar
25.Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in Fortran: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992).Google Scholar
26.Nichols, C.S., Cook, R.F., Clarke, D.R., and Smith, D.A., Acta Metall. Mater., 39, 1657 (1991).CrossRefGoogle Scholar
27.Nichols, C.S., Cook, R.F., Clarke, D.R., and Smith, D.A., Acta Metall. Mater. 39, 1667 (1991).CrossRefGoogle Scholar
28.Nichols, C.S. and Clarke, D.R., Acta. Metall. Mater. 39, 995 (1991).CrossRefGoogle Scholar