Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T19:50:48.675Z Has data issue: false hasContentIssue false

Cobalt disilicide formed by rapid thermal annealing and throughmetal arsenic implantation

Published online by Cambridge University Press:  31 January 2011

Edmund P. Burte
Affiliation:
Fraunhofer-Arbeitsgruppe für Integrierte Schaltungen, Artilleriestrasse 12, D-8520 Erlangen, Germany
Min Ye
Affiliation:
Fraunhofer-Arbeitsgruppe für Integrierte Schaltungen, Artilleriestrasse 12, D-8520 Erlangen, Germany
Get access

Abstract

Cobalt disilicide CoSi2 of a specific resistivity of 23 μω was formed by the solid phase reaction of cobalt and silicon in the phase sequence of Co2Si, CoSi, and CoSi2 by use of rapid thermal annealing. The through-metal arsenic implantation caused the mixing of cobalt with the silicon substrate and the formation of cobalt silicides. A significant lateral growth of cobalt silicides was observed in samples subjected to one-step rapid thermal annealing process at 900 °C without through-metal ion implantation. Ion beam mixing reduced this lateral silicide growth efficiently, but resulted in a higher density of cobalt atoms remaining in the silicon oxide film than after rapid thermal annealing, as revealed by vapor phase decomposition atomic absorption spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Murarka, S.P., Silicides for VLSI Application (Academic Press, New York, 1983).Google Scholar
2.Crowder, A. L. and Zirinsky, S., IEEE Trans. Electron Devices ED-26, 369 (1979).CrossRefGoogle Scholar
3.Murarka, S.P., Fraser, D.B., Sinha, A.K., and Levinstein, H.J., IEEE J. Solid State Circuits SC-15, 474 (1980).CrossRefGoogle Scholar
4.Lien, C-D., Bartur, M., and Nicolet, M-A., in Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W. K. (Mater. Res. Soc. Symp. Proc. 25, Pittsburgh, PA, 1984), p. 51.Google Scholar
5.Kakumu, M. and Matsunaga, J., IEEE, IEDM Tech. Dig. 85, 415 (1985).Google Scholar
6.Murao, Y., Mihara, S., Kikuchi, M., Sase, R., and Furuhashi, T., IEEE, IEDM Tech. Dig. 83, 518 (1983).Google Scholar
7.Lucchese, C. J., in VLSI Science and Technology/1982, 232 (1982).Google Scholar
8.Tabasky, M., Bulat, E.S., Ditchek, B.M., Sullivan, M.A., and Shatas, S.C., IEEE Trans. Electron Devices ED-34, 548 (1987).CrossRefGoogle Scholar
9.van den Hove, L., Wolters, R., Maex, K., de Keersmaecker, R. F., and Declerck, G.J., IEEE Trans. Electron Devices ED-34, 554 (1987).CrossRefGoogle Scholar
10.Lau, S. S., Mayer, J. W., and Tu, K. N., J. Appl. Phys. 49, 4005 (1978).CrossRefGoogle Scholar
11.Shukla, R. K., Davies, P. W., and Tracy, B. M., J. Vac. Sci. Technol. B4, 1344 (1986).CrossRefGoogle Scholar
12.Ryssel, H. and Ruge, I., Ion Implantation (John Wiley and Sons, 1986), p. 114.Google Scholar
13.d'Heurle, F.M. and Petersson, C. S., Thin Solid Films 128, 283 (1985).CrossRefGoogle Scholar
14.Murarka, S. P., Chang, C. C., and Adams, A. C., J. Vac. Sci. Technol. B5, 865 (1987).Google Scholar
15.Murarka, S. P., J. Vac. Sci. Technol. 17, 775 (1980).CrossRefGoogle Scholar
16.van Gurp, G. J., van der Weg, W. F., and Sigurd, D., J. Appl. Phys. 49, 4011 (1978).CrossRefGoogle Scholar