Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T22:14:48.781Z Has data issue: false hasContentIssue false

Clean superconductivity in electron doped Pr2−x Cex CuO4+δ thin films hetero-epitaxially grown on SrTiO3 by reactive molecular beam epitaxy

Published online by Cambridge University Press:  03 November 2016

Ai Ikeda*
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
Hiroshi Irie
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
Hideki Yamamoto
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
Yoshiharu Krockenberger
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Pr2−x Cex CuO4+δ thin films were grown hetero-epitaxially on (001) SrTiO3 substrates using ozone-assisted molecular beam epitaxy. High-quality epilayers with a cerium concentrations of x = 0.15 were grown and characterized electrically, structurally, and by magnetization measurements. The Pr2−x Cex CuO4+δ films were found to maintain the tetragonal Nd2CuO4 (T′) crystal structure with a linear dependence of lattice constant on the Ce concentration. The superconductivity of the Pr2−x Cex CuO4+δ films was maintained up to x ≈ 0.23 with a T c up to 12.6 K. For x < 0.15, control of the oxygen concentration δ by annealing is crucial for the induction of superconductivity in Pr2−x Cex CuO4+δ and this still holds for x > 0.20. We show that the electron mean free path length $\ell$ may be significantly enhanced by optimizing those annealing conditions. Moreover, the enhancement of $\ell$ leads to a reduction of the upper critical field, suggesting that superconductivity of Pr2−x Cex CuO4+δ is to be considered in the clean limit.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cho, A.Y. and Arthur, J.R.: Molecular beam epitaxy. Prog. Solid State Chem. 10(Part 3), 157 (1975).Google Scholar
Betts, R.A.: Growth of thin-film lithium niobate by molecular beam epitaxy. Electron. Lett. 21, 960 (1985).Google Scholar
Bednorz, J.G. and Müller, K.A.: Possible high T c superconductivity in the Ba–La–Cu–O system. Zeitschrift für Physik B 64(2), 189 (1986).CrossRefGoogle Scholar
Oh, B., Naito, M., Arnason, S., Rosenthal, P., Barton, R., Beasley, M.R., Geballe, T.H., Hammond, R.H., and Kapitulnik, A.: Critical current densities and transport in superconducting YBa2Cu3O7−δ films made by electron beam coevaporation. Appl. Phys. Lett. 51, 852 (1987).Google Scholar
Johnson, B.R., Beauchamp, K.M., Wang, T., Liu, J.X., McGreer, K.A., Wan, J.C., Tuominen, M., Zhang, Y.J., Mecartney, M.L., and Goldman, A.M.: Insitu growth of DyBa2Cu3O7−x thin films by molecular beam epitaxy. Appl. Phys. Lett. 56, 1991 (1990).Google Scholar
Berkley, D.D., Johnson, B.R., Anand, N., Beauchamp, K.M., Conroy, L.E., Goldman, A.M., Maps, J., Mauersberger, K., Mecartney, M.L., Morton, J., Tuominen, M., and Zhang, Y.J.: Insitu formation of superconducting YBa2Cu3O7−x thin films using pure ozone vapor oxidation. Appl. Phys. Lett. 53, 1973 (1988).Google Scholar
Spah, R.J., Hess, H.F., Stormer, H.L., White, A.E., and Short, K.T.: Parameters for insitu growth of high T c superconducting thin films using an oxygen plasma source. Appl. Phys. Lett. 53, 441 (1988).Google Scholar
Schlom, D.G., Eckstein, J.N., Hellman, E.S., Streiffer, S.K., Harris, J.S., Beasley, M.R., Bravman, J.C., Geballe, T.H., Webb, C., von Dessonneck, K.E., and Turner, F.: Molecular beam epitaxy of layered Dy–Ba–Cu–O compounds. Appl. Phys. Lett. 53, 1660 (1988).Google Scholar
Naito, M., Hammond, R.H., Oh, B., Hahn, M.R., Hsu, J.W.P., Rosenthal, P., Marshall, A.F., Beasley, M.R., Geballe, T.H., and Kapitulnik, A.: Thin-film synthesis of the high-T c oxide superconductor YBa2Cu3O7 by electron-beam codeposition. J. Mater. Res. 2, 713 (1987).Google Scholar
Kwo, J., Hong, M., Trevor, D.J., Fleming, R.M., White, A.E., Farrow, R.C., Kortan, A.R., and Short, K.T.: Insitu epitaxial growth of Y1Ba2Cu3O7−x films by molecular beam epitaxy with an activated oxygen source. Appl. Phys. Lett. 53, 2683 (1988).Google Scholar
Kurian, J. and Naito, M.: MBE growth of large area RE-123 superconductor thin films for microwave applications. IEEE Trans. Appl. Supercond. 15, 2966 (2005).Google Scholar
Terashima, T., Iijima, K., Yamamoto, K., Bando, Y., and Mazaki, H.: Single-crystal YBa2Cu3O7−x thin films by activated reactive evaporation. Jpn. J. Appl. Phys. 27, L91 (1988).CrossRefGoogle Scholar
Locquet, J.P., Gerber, C., Cretton, A., Jaccard, Y., Williams, E., and Machler, E.: Electrochemical oxidation of La2CuO4 thin films grown by molecular beam epitaxy. Appl. Phys. A: Solids Surf. 57(2), 211 (1993).Google Scholar
Naito, M. and Sato, H.: Stoichiometry control of atomic beam fluxes by precipitated impurity phase detection in growth of (Pr,Ce)2CuO4 and (La,Sr)2CuO4 films. Appl. Phys. Lett. 67(17), 2557 (1995).Google Scholar
Naito, M., Sato, H., and Yamamoto, H.: MBE growth of (La,Sr)2CuO4 and (Nd,Ce)2CuO4 thin films. Phys. C 293(1–4), 36 (1997).Google Scholar
Ikeda, A., Irie, H., Yamamoto, H., and Krockenberger, Y.: Incommensurate defect-driven electron correlations in Pr1.85Ce0.15CuO4+δ . Phys. Rev. B: Condens. Matter Mater. Phys. 94, 054513 (2016).Google Scholar
Krockenberger, Y., Horio, M., Irie, H., Fujimori, A., and Yamamoto, H.: As-grown superconducting Pr2CuO4 under thermodynamic constraints. Appl. Phys. Express 8(5), 053101 (2015).Google Scholar
Krockenberger, Y., Kurian, J., Winkler, A., Tsukada, A., Naito, M., and Alff, L.: Superconductivity phase diagrams for the electron-doped cuprates R 2−x Ce x CuO4 (R = La, Pr, Nd, Sm, and Eu). Phys. Rev. B: Condens. Matter Mater. Phys. 77, 060505 (2008).Google Scholar
Krockenberger, Y., Yamamoto, H., Tsukada, A., Mitsuhashi, M., and Naito, M.: Unconventional transport and superconducting properties in electron doped cuprates. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 184502 (2012).Google Scholar
Yamamoto, H., Matsumoto, O., Krockenberger, Y., Yamagami, K., and Naito, M.: Molecular beam epitaxy of superconducting Pr2CuO4 films. Solid State Commun. 151, 771 (2011).CrossRefGoogle Scholar
Krockenberger, Y., Yamamoto, H., Mitsuhashi, M., and Naito, M.: Universal superconducting ground state in Nd1.85Ce0.15CuO4 and Nd2CuO4 . Jpn. J. Appl. Phys. 51, 010106 (2012).CrossRefGoogle Scholar
Enomoto, Y., Murakami, T., and Moriwaki, K.: Ba1−x K x BiO3 thin film preparation by ECR ion-beam oxidation, and film properties. Jpn. J. Appl. Phys., Part 2 28(8), L1355 (1989).Google Scholar
Hellman, E.S., Hartford, E.H., and Gyorgy, E.M.: Epitaxial Ba1−x K x BiO3 films on MgO: Nucleation, cracking, and critical currents. Appl. Phys. Lett. 58(12), 1335 (1991).CrossRefGoogle Scholar
Hellman, E.S., Hartford, E.H., and Fleming, R.M.: Molecular beam epitaxy of superconducting (Rb,Ba)BiO3 . Appl. Phys. Lett. 55(20), 2120 (1989).Google Scholar
Hellman, E.S. and Hartford, E.H.: Adsorption controlled molecular beam epitaxy of rubidium barium bismuth oxide. J. Vac. Sci. Technol., B 8(2), 332 (1990).CrossRefGoogle Scholar
Yamamoto, H., Aoki, K., Tsukada, A., and Naito, M.: Growth of Ba1−xKxBiO3 thin films by molecular beam epitaxy. Physica C 412–414, 192 (2004).Google Scholar
Utz, B., Wiest, F., Prusseit, W., Berberich, P., and Kinder, H.: Ba1−xKxBiO3 epitaxy on various substrate materials. IEEE Trans. Appl. Supercond. 5, 1351 (1995).Google Scholar
Schlom, D.G., Marshall, A.F., Sizemore, J.T., Chen, Z.J., Eckstein, J.N., Bozovic, I., von Dessonneck, K.E., Harris, J.S. Jr., and Bravman, J.C.: Molecular beam epitaxial growth of layered Bi–Sr–Ca–Cu–O compounds. J. Cryst. Growth 102(3), 361 (1990).Google Scholar
Schlom, D.G., Eckstein, J.N., Bozovic, I., Chen, Z.J., Marshall, A.F., von Dessonneck, K.E., and Harris, J.S. Jr.: Growth of Semiconductor Structures and High-T c Thin Films on Semiconductors, Vol. 1285, SPIE: Bellingham, 1990; pp. 234247.Google Scholar
Klausmeier-Brown, M.E., Virshup, G.F., Bozovic, I., Eckstein, J.N., and Ralls, K.S.: Engineering of ultrathin barriers in high T c, trilayer Josephson junctions. Appl. Phys. Lett. 60(22), 2806 (1992).Google Scholar
Brazdeikis, A., Vailionis, A., and Flodstrom, A.S.: Layer-by-layer growth of Bi2Sr2Ca n−1Cu n O x films with n ≥ 3 by molecular beam epitaxy. Phys. C 235–240, 711 (1994).Google Scholar
Schlom, D.G. and Harris, J.S. Jr.: MBE growth of high-Tc superconductors. In Molecular Beam Epitaxy: Applications to Key Materials, Farrow, R.F.C., ed.; Noyes: Park Ridge, 1995; pp. 505622.Google Scholar
Eckstein, J. and Bozovic, I.: High-temperature superconducting multilayers and heterostructures grown by atomic layer-by-layer molecular beam epitaxy. Annu. Rev. Mater. Sci. 25, 679 (1995).CrossRefGoogle Scholar
Tsukada, I. and Uchinokura, K.: In-situ preparation of superconducting Bi2Sr2Ca n-1Cu n O y (n = 1-5) thin films by molecular beam epitaxy technique. Jpn. J. Appl. Phys. 30, L1114 (1991).Google Scholar
Sitar, Z., Gitmans, F., Liu, W., and Gunter, P.: Homo and Heteroepitaxial Growth of LiTaO3 and LiNbO3 by MBE. In Epitaxial Oxide Thin Films II, Vol. 401, Speck, J.S., Fork, D.K., Wolf, R.M., and Shiosaki, T., eds.; Materials Research Society: Pittsburgh, 1996; pp. 255260.Google Scholar
McKee, R.A., Walker, F.J., Conner, J.R., Specht, E.D., and Zelmon, D.E.: Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon. Appl. Phys. Lett. 59(7), 782 (1991).Google Scholar
McKee, R.A., Walker, F.J., Specht, E.D., Jellison, G.E. Jr., and Boatner, L.A.: Interface stability and the growth of optical quality perovskites on MgO. Phys. Rev. Lett. 72(17), 2741 (1994).Google Scholar
Tsurumi, T., Suzuki, T., Yamane, M., and Daimon, M.: Fabrication of barium titanate/strontium titanate artificial superlattice by atomic layer epitaxy. Jpn. J. Appl. Phys., Part 1 33(9B), 5192 (1994).Google Scholar
Theis, C.D. and Schlom, D.G.: Epitaxial lead titanate grown by MBE. J. Cryst. Growth 174(1–4), 473 (1997).Google Scholar
Theis, C.D., Yeh, J., Schlom, D.G., Hawley, M.E., and Brown, G.W.: Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy. Thin Solid Films 325, 107 (1998).Google Scholar
Theis, C.D., Yeh, J., Schlom, D.G., Hawley, M.E., Brown, G.W., Jiang, J.C., and Pan, X.Q.: Adsorption-controlled growth of Bi4Ti3O12Bi4Ti3O12 by reactive MBE. Appl. Phys. Lett. 72(22), 2817 (1998).CrossRefGoogle Scholar
Migita, S., Ota, H., Fujino, H., Kasai, Y., and Sakai, S.: Epitaxial Bi4Ti3O12 thin film growth using Bi self-limiting function. J. Cryst. Growth 200(1–2), 161 (1999).Google Scholar
Bozovic, I., Eckstein, J.N., and Virshup, G.F.: Superconducting oxide multilayers and superlattices: Physics, chemistry, and nanoengineering. Phys. C 235–240(1), 178 (1994).CrossRefGoogle Scholar
Eckstein, J.N., Bozovic, I., Rzchowski, M., O'Donnell, J., Hinaus, B., and Onellion, M.: Molecular Beam Epitaxy of Single Crystal Colossal Magneto-Resistive Material. In Epitaxial Oxide Thin Films II, Vol. 40, Speck, J.S., Fork, D.K., Wolf, R.M., and Shiosaki, T., eds.; Materials Research Society: Pittsburgh, 1996; pp. 467471.Google Scholar
Maritato, L. and Petrov, A.Y.: High metal-insulator transition temperature in La1−x Sr x MnO3 thin films grown in low oxygen partial pressure by molecular beam epitaxy. J. Magn. Magn. Mater. 272–276(2), 1135 (2004).Google Scholar
Eckstein, J.N., Bozovic, I., O'Donnell, J., Onellion, M., and Rzchowski, M.S.: Anisotropic magnetoresistance in tetragonal La1−x Ca x MnOδ thin films. Appl. Phys. Lett. 69(9), 1312 (1996).Google Scholar
Roesler, G.M. Jr., Filipkowski, M.E., Broussard, P.R., Idzerda, Y.U., Osofsky, M.S., and Soulen, R.J. Jr.: Epitaxial multilayers of ferromagnetic insulators with nanomagnetic metals and superconductors. In Superconducting Superlattices and Multilayers, Vol. 2157, , I. Bozovic, , ed.; SPIE: Bellingham, 1994; pp. 285290.CrossRefGoogle Scholar
Iwata, N., Pindoria, G., Morishita, T., and Kohn, K.: Preparation and magnetic properties of EuO thin films epitaxially grown on MgO and SrTiO3 substarets. J. Phys. Soc. Jpn. 69(1), 230 (2000).Google Scholar
Lettieri, J., Vaithyanathan, V., Eah, S.K., Stephens, J., Sih, V., Awschalom, D.D., Levy, J., and Schlom, D.G.: Epitaxial growth and magnetic properties of EuO on (001) Si by molecular beam epitaxy. Appl. Phys. Lett. 83(5), 975 (2003).Google Scholar
Schmehl, A., Vaithyanathan, V., Herrnberger, A., Thiel, S., Richter, C., Liberati, M., Heeg, T., Rockerath, M., Fitting Kourkoutis, L., Muhlbaur, S., Boni, P., Muller, D.A., Barash, Y., Schubert, J., Idzerda, Y., Mannhart, J., and Schlom, D.G.: Epitaxial integration of the highly spin-polarized ferromagnetic semiconductor EuO with silicon and GaN. Nat. Mater. 6(11), 882 (2007).Google Scholar
Chambers, S.A.: Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39(5–6), 105180 (2000).CrossRefGoogle Scholar
Kabelac, J., Ghosh, S., Dobal, P., and Katiyar, R.: RF oxygen plasma assisted molecular beam epitaxy growth of BiFeO3 thin films on SrTiO3 (001). J. Vac. Sci. Technol., B 25(3), 1049 (2007).Google Scholar
Ihlefeld, J.F., Kumar, A., Gopalan, V., Schlom, D.G., Chen, Y.B., Pan, X.Q., Heeg, T., Schubert, J., Ke, X., Schiffer, P., Orenstein, J., Martin, L.W., Chu, Y.H., and Ramesh, R.: Adsorption-controlled molecular-beam epitaxial growth of BiFeO3 . Appl. Phys. Lett. 91(7), 071922 (2007).CrossRefGoogle Scholar
Ihlefeld, J.F., Podraza, N.J., Liu, Z.K., Rai, R.C., Xu, X., Heeg, T., Chen, Y.B., Li, J., Collins, R.W., Musfeldt, J.L., Pan, X.Q., Schubert, J., Ramesh, R., and Schlom, D.G.: Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 92(14), 142908 (2008).Google Scholar
Imada, S., Shouriki, S., Tokumitsu, E., and Ishiwara, H.: Epitaxial growth of ferroelectric YMnO3 thin films on Si (111) substrates by molecular beam epitaxy. Jpn. J. Appl. Phys., Part 1 37(12A), 6497 (1998).Google Scholar
Chye, Y., Liu, T., Li, D., Lee, K., Lederman, D., and Myers, T.H.: Molecular beam epitaxy of YMnO3 on c-plane GaN. Appl. Phys. Lett. 88(13), 132903 (2006).CrossRefGoogle Scholar
Moyer, J.A., Misra, R., Mundy, J.A., Brooks, C.M., Heron, J.T., Muller, D.A., Schlom, D.G., and Schiffer, P.: Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry. APL Mater. 2, 012106 (2014).Google Scholar
Bozovic, I., Eckstein, J.N., Virshup, G.F., Chaiken, A., Wall, M., Howell, R., and Fluss, M.: Atomic-layer engineering of cuprate superconductors. J. Supercond. 7(1), 187195 (1994).Google Scholar
Bozovic, I., Logvenov, G., Verhoeven, M.A.J., Caputo, P., Goldobin, E., and Geballe, T.H.: No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor. Nature 422(6934), 873 (2003).Google Scholar
Jiang, J.C., Pan, X.Q., Tian, W., Theis, C.D., and Schlom, D.G.: Abrupt PbTiO3/SrTiO3 superlattices grown by reactive molecular beam epitaxy. Appl. Phys. Lett. 74(19), 2851 (1999).Google Scholar
Schlom, D.G., Haeni, J.H., Lettieri, J., Theis, C.D., Tian, W., Jiang, J.C., and Pan, X.Q.: Oxide nano-engineering using MBE. Mater. Sci. Eng., B 87(3), 282 (2001).Google Scholar
Warusawithana, M.R., Colla, E.V., Eckstein, J.N., and Weissman, M.B.: Artificial dielectric superlattices with broken inversion symmetry. Phys. Rev. Lett. 90(3), 036802 (2003).Google Scholar
Tian, W., Jiang, J.C., Pan, X.Q., Haeni, J.H., Li, Y.L., Chen, L.Q., Schlom, D.G., Neaton, J.B., Rabe, K.M., and Jia, Q.X.: Structural evidence for enhanced polarization in a commensurate short-period BaTiO3/SrTiO3 superlattice. Appl. Phys. Lett. 89(9), 092905 (2006).Google Scholar
Tenne, D.A., Bruchhausen, A., Lanzillotti-Kimura, N.D., Fainstein, A., Katiyar, R.S., Cantarero, A., Soukiassian, A., Vaithyanathan, V., Haeni, J.H., Tian, W., Schlom, D.G., Choi, K.J., Kim, D.M., Eom, C.B., Sun, H.P., Pan, X.Q., Li, Y.L., Chen, L.Q., Jia, Q.X., Nakhmanson, S.M., Rabe, K.M., and Xi, X.X.: Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313(5793), 1614 (2006).Google Scholar
Soukiassian, A., Tian, W., Vaithyanathan, V., Haeni, J.H., Chen, L.Q., Xi, X.X., Schlom, D.G., Tenne, D.A., Sun, H.P., Pan, X.Q., Choi, K.J., Eom, C.B., Li, Y.L., Jia, Q.X., Constantin, C., Feenstra, R.M., Bernhagen, M., Reiche, P., and Uecker, R.: Growth of nanoscale BaTiO3/SrTiO3 superlattices by molecular-beam epitaxy. J. Mater. Res. 23(5), 14171432 (2008).Google Scholar
Bhattacharya, A., Zhai, X., Warusawithana, M., Eckstein, J.N., and Bader, S.D.: Signatures of enhanced ordering temperatures in digital superlattices of (LaMnO3) m /(SrMnO3)2m . Appl. Phys. Lett. 90(22), 222503 (2007).CrossRefGoogle Scholar
May, S.J., Shah, A.B., te Velthuis, S.G.E., Fitzsimmons, M.R., Zuo, J.M., Zhai, X., Eckstein, J.N., Bader, S.D., and Bhattacharya, A.: Magnetically asymmetric interfaces in a LaMnO3/SrMnO3 superlattice due to structural asymmetries. Phys. Rev. B: Condens. Matter Mater. Phys. 77(17), 174409 (2008).Google Scholar
Adamo, C., Ke, X., Schiffer, P., Soukiassian, A., Warusawithana, M., Maritato, L., and Schlom, D.G.: Electrical and magnetic properties of (SrMO3) n /(LaMnO3)2n superlattices. Appl. Phys. Lett. 92(11), 112508 (2008).Google Scholar
Bhattacharya, A., May, S.J., te Velthuis, S.G.E., Warusawithana, M., Zhai, X., Shah, A.B., Zuo, J-M., Fitzsimmons, M.R., Bader, S.D., and Eckstein, J.N.: Metal-insulator transition and its relation to magnetic structure in (LaMnO3)2n /(SrMnO3) n superlattices. Phys. Rev. Lett. 100(25), 257203 (2008).Google Scholar
Monkman, E.J., Adamo, C., Mundy, J.A., Shai, D.E., Harter, J.W., Shen, D., Burganov, B., Muller, D.A., Schlom, D.G., and Shen, K.M.: Quantum many-body interactions in digital oxide superlattices. Nat. Mater. 11(10), 855 (2012).Google Scholar
Yamamoto, H., Krockenberger, Y., and Naito, M.: Augmented methods for growth and development of novel multi-cation oxides. Proc. SPIE 8987, 89870V (2014).Google Scholar
Lu, C., Blissett, C.D., and Diehl, G.: An electron impact emission spectroscopy flux sensor for monitoring deposition rate at high background gas pressure with improved accuracy. J. Vac. Sci. Technol., A 26, 956 (2008).Google Scholar
Kubiak, R.A., Newstead, S.M., Powell, A.R., Parker, E.H.C., Whall, T.E., Naylor, T., and Bowen, K.: Improved flux control from the Sentinel III electron impact emission spectroscopy system. J. Vac. Sci. Technol., A 9, 2423 (1991).Google Scholar
Lu, C., Lightner, M.J., and Gogol, C.A.: Rate controlling and composition analysis of alloy deposition processes by electron impact emission spectroscopy (EIES). J. Vac. Sci. Technol. 14, 103 (1977).Google Scholar
Du, Y., Droubay, T.C., Liyu, A.V., Li, G., and Chambers, S.A.: Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy. Appl. Phys. Lett. 104, 163110 (2014).Google Scholar
Haeni, J.H., Theis, C.D., and Schlom, D.G.: RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4(2), 385 (2000).Google Scholar
Krockenberger, Y., Sakuma, K., and Yamamoto, H.: Molecular beam epitaxy and transport properties of infinite-layer Sr0.9La0.1CuO2 thin films. Appl. Phys. Express 5(4), 043101 (2012).Google Scholar
Lee, C-H., Podraza, N.J., Zhu, Y., Berger, R.F., Shen, S., Sestak, M., Collins, R.W., Kourkoutis, L.F., Mundy, J.A., Wang, H., Mao, Q., Xi, X., Brillson, L.J., Neaton, J.B., Muller, D.A., and Schlom, D.G.: Effect of reduced dimensionality on the optical band gap of SrTiO3 . Appl. Phys. Lett. 102(12), 122901 (2013).CrossRefGoogle Scholar
Schlom, D.G.: Perspective: Oxide molecular-beam epitaxy rocks! APL Mater. 3, 062403 (2015).Google Scholar
Lee, J.H., Luo, G., Tung, I.C., Chang, S.H., Luo, Z., Malshe, M., Gadre, M., Bhattacharya, A., Nakhmanson, S.M., Eastman, J.A., Hong, H., Jellinek, J., Morgan, D., Fong, D.D., and Freeland, J.W.: Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nat. Mater. 13(9), 879 (2014).Google Scholar
Marin, S.R., Cornejo, S.G., and Arriagada, L.: Spectral line selection for determination of zirconium, cerium, thorium and titanium by inductively coupled plasma atomic emission spectrometry in zirconia-based ceramic materials. J. Anal. At. Spectrom. 9, 93 (1994).Google Scholar
von Harrach, H.S., Dona, P., Freitag, B., Soltau, H., Niculae, A., and Rohde, M.: An integrated silicon drift detector system for FEI Schottky field emission transmission electron microscopes. Microsc. Microanal. 15, 208 (2009).Google Scholar
Rose, H.H.: Optics of high-performance electron microscopes. Sci. Technol. Adv. Mater. 9(1), 014107 (2008).Google Scholar
Lu, P., Xiong, J., Benthem, M.V., and Jia, Q.: Atomic-scale chemical quantification of oxide interfaces using energy-dispersive x-ray spectroscopy. Appl. Phys. Lett. 102(17), 173111 (2013).Google Scholar
Allen, L.J., Findlay, S.D., Lupini, A.R., Oxley, M.P., and Pennycook, S.J.: Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy. Phys. Rev. Lett. 91, 105503 (2003).Google Scholar
Lu, P., Romero, E., Lee, S., MacManus-Driscoll, J.L., and Jia, Q.: Chemical quantification of atomic-scale EDS maps under thin specimen conditions. Microsc. Microanal. 20, 1782 (2014).Google Scholar
Cliff, G. and Lorimer, G.W.: The quantitative analysis of thin specimens. J. Microsc. 103(2), 203 (1975).Google Scholar
Kojima, K.M., Krockenberger, Y., Yamauchi, I., Miyazaki, M., Hiraishi, M., Koda, A., Kadono, R., Kumai, R., Yamamoto, H., Ikeda, A., and Naito, M.: Bulk superconductivity in undoped T′-La0.9Y0.1CuO4 probed by muon spin rotation. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 180508 (2014).Google Scholar
Finkelman, S., Sachs, M., Droulers, G., Butch, N.P., Paglione, J., Bach, P., Greene, R.L., and Dagan, Y.: Resistivity at low temperatures in electron-doped cuprate superconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 094508 (2010).CrossRefGoogle Scholar
King, D.M., Shen, Z-X., Dessau, D.S., Wells, B.O., Spicer, W.E., Arko, A.J., Marshall, D.S., DiCarlo, J., Loeser, A.G., Park, C.H., Ratner, E.R., Peng, J.L., Li, Z.Y., and Greene, R.L.: Fermi surface and electronic structure of Nd2−x Ce x CuO4+δ . Phys. Rev. Lett. 70, 3159 (1993).Google Scholar
Brinkmann, M., Rex, T., Stief, M., Bach, H., and Westerholt, K.: Residual resistivity and oxygen stoichiometry in Pr2−x Ce x CuO4+δ single crystals. Phys. C 269(12), 76 (1996).Google Scholar
Radaelli, P.G., Jorgensen, J.D., Schultz, A.J., Peng, J.L., and Greene, R.L.: Evidence of apical oxygen in Nd2CuO y determined by single-crystal neutron diffraction. Phys. Rev. B: Condens. Matter Mater. Phys. 49, 15322 (1994).Google Scholar
Krockenberger, Y., Irie, H., Matsumoto, O., Yamagami, K., Mitsuhashi, M., Tsukada, A., Naito, M., and Yamamoto, H.: Emerging superconductivity hidden beneath charge-transfer insulators. Sci. Rep. 3, 2235 (2013).Google Scholar
Krockenberger, Y., Irie, H., Yan, J., Waterston, L., Eleazer, B., Sakuma, K., and Yamamoto, H.: Superconductivity in cuprates with square-planar coordinated copper driven by hole carriers. Appl. Phys. Express 7(6), 063101 (2014).Google Scholar
Schultz, A.J., Jorgensen, J.D., Peng, J.L., and Greene, R.L.: Single-crystal neutron-diffraction structures of reduced and oxygenated Nd2−x Ce x CuO y . Phys. Rev. B: Condens. Matter Mater. Phys. 53, 5157 (1996).Google Scholar
Krockenberger, Y., Eleazer, B., Irie, H., and Yamamoto, H.: Superconducting- and insulating-ground states in La2CuO4 structural isomers. J. Phys. Soc. Jpn. 85(11), 114602 (2014).Google Scholar
Dagan, Y., Beck, R., and Greene, R.L.: Dirty superconductivity in the electron-doped cuprate Pr2−x Ce x CuO4−δ: Tunneling study. Phys. Rev. Lett. 99, 147004 (2007).Google Scholar