Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T05:23:19.906Z Has data issue: false hasContentIssue false

Chemisorptive electron emission and atomic force microscopy as probes of plastic deformation during fracture at a metal/glass interface

Published online by Cambridge University Press:  03 March 2011

Sumio Nakahara*
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
S.C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
J.T. Dickinson
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
*
a)Permanent address: Department of Mechanical Engineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 564, Japan.
Get access

Abstract

We examine the use of chemisorptive emission (electron emission accompanying the adsorption of a reactive gas on a metal surface) and atomic force microscopy as measures of plastic deformation during fracture along a metallic Mg/glass interface. Localized ductile deformation in the metallic phase enhances the fracture energy, exposes metallic Mg to the reactive O2 atmosphere, and produces intense emissions. The number of electrons emitted following fracture in low-pressure oxygen atmospheres is strongly correlated with the total energy expended during failure (peel energy). The presence of localized ductile deformation is verified by atomic force microscopy (AFM): voids are observed on surfaces yielding significant cmissions and enhanced fracture energies. These voids are not observed on samples yielding the lowest peel energies and emission intensities, i.e., where the contribution of deformation to the peel energy is negligible. Quantitative use of roughness data derived from the AFM images is, however, problematic. The potential for chemisorptive electron emission as a probe of deformation along interfaces involving Mg, Ti, Zr, and Al is promising.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Evans, A. G. and Hutchinson, J. W., Acta Metall. 37, 909 (1989).CrossRefGoogle Scholar
2Chen, Z. and Mecholsky, J. J. Jr., J. Mater. Res. 8, 2362 (1993).CrossRefGoogle Scholar
3Evans, A. G. and Dalgleish, B. J., Mater. Sci. Eng. A162, 1 (1993).CrossRefGoogle Scholar
4Kim, J., Kim, K. S., and Kim, Y. H., J. Adhesion Sci. Technol. 3, 174 (1989).CrossRefGoogle Scholar
5Evans, A. G., Dalgleish, B. J., He, M., and Hutchinson, J. W., Acta Metall. 37, 3249 (1989).CrossRefGoogle Scholar
6Reimanis, I. E., Dalgleish, B. J., and Evans, A. G., Acta Metall. Mater. 39, 3133 (1991).CrossRefGoogle Scholar
7Dickinson, J. T., Jensen, L. C., Langford, S. C., and Hoagland, R. G., J. Mater. Res. 9, 1156 (1994).CrossRefGoogle Scholar
8Sujak, B. and Gieroszyński, A., Acta Phys. Polon. 28, (1968).Google Scholar
9Baxter, W. J., Fatigue Eng. Mater. Struc. 1, 343 (1979).CrossRefGoogle Scholar
10Hagena, O. F., Knop, G., Fromknecht, R., and Linker, G., J. Vac. Sci. Technol. A 12, 282 (1994).CrossRefGoogle Scholar
11Watanabe, Y., Nakamura, Y., Dickinson, J. T., and Langford, S. C., J. Non-Cryst. Solids 177, 9 (1994).CrossRefGoogle Scholar
12K'Singam, L. A., Dickinson, J. T., and Jensen, L. C., J. Am. Ceram. Soc. 68, 510 (1985).CrossRefGoogle Scholar
13Doering, D. L., Langford, S. C., Dickinson, J. T., and Xiong-Skiba, P., J. Vac. Sci. Technol. A 8, 2401 (1990).CrossRefGoogle Scholar
14Mecholsky, J. J. Jr., Freimam, S. W., and Rice, R. W., J. Mater. Sci. 11, 1310 (1976).CrossRefGoogle Scholar
15Hertzberg, Richard W., Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (John Wiley, New York, 1989), pp. 8183.Google Scholar
16Evans, A. G. and Dalgleish, B. J., Acta Metall. Mater. 40, S295 (1992).CrossRefGoogle Scholar
17McCarroll, B.M., J. Chem. Phys. 50, 4758 (1969).CrossRefGoogle Scholar
18Kasemo, B., Törnqvist, E., and Wallden, L., Mater. Sci. Eng. 42, 23 (1980).CrossRefGoogle Scholar
19Prince, R. H. and Persaud, R., Surf. Sci. 207, (1988).CrossRefGoogle Scholar
20Prince, R. H., Lambert, R. M., and Foord, J. S., Surf. Sci. 107, 605 (1981).CrossRefGoogle Scholar
21Loudiana, M. A., Bye, J., Dickinson, J. T., and Dickinson, D. A., Surf. Sci. 157, 459 (1985).CrossRefGoogle Scholar
22Krylova, I. V., Poverkhnost Fiz. Khim. Mekhan. 1, 5 (1988).Google Scholar
23Nørskov, J.K., Newns, D. M., and Lindqvist, B. I., Surf. Sci. 80, 179 (1979).CrossRefGoogle Scholar
24Kasemo, B., Törnqvist, E., Nørskov, J. K., and Lindqvist, B. I., Surf. Sci. 89, 554 (1979).CrossRefGoogle Scholar
25Prince, R. H., Lambert, R. M., and Foord, J. S., Surf. Sci. 107, 605 (1981).CrossRefGoogle Scholar
26Cox, M. P., Foord, J. S., Lambert, R. M., and Prince, R. H., Surf. Sci. 129, 399 (1983).CrossRefGoogle Scholar
27Deblasi Bourdon, E.B. and Prince, R. H., Surf. Sci. 144, 591 (1984).CrossRefGoogle Scholar
28Namba, H., Darville, J., and Gilles, J. M., Surf. Sci. 108, 446 (1981).CrossRefGoogle Scholar
29Allen, G. C., Tucker, P. M., Hayden, B. E., and Klemperer, D. F., Surf. Sci. 102, 207 (1981).CrossRefGoogle Scholar
30Gessell, T. F. and Arakawa, E. T., Surf. Sci. 33, 419 (1972).CrossRefGoogle Scholar
31Embury, J. D. and Hirth, J. P., “on dislocation storage and the mechanical response of fine scale microstructures,” pre-publication.Google Scholar
32Mandelbrot, B. B., Passoja, D. E., and Paullay, A.J., Nature 308, 721 (1984).CrossRefGoogle Scholar
33Mecholsky, J. J., Passoja, D. E., and Feinberg-Ringel, K. S., J. Am.Ceram. Soc. 72, 60 (1989).CrossRefGoogle Scholar
34Underwood, E. E. and Banerji, K., Mater. Sci. Eng. 80, 1 (1986).CrossRefGoogle Scholar
35Chermant, J. L. and Coster, M., J. Mater. Sci. 14, 509 (1979).CrossRefGoogle Scholar
36Sayles, R. S., in Rough Surfaces, edited by Thomas, T. R. (Longman, London, 1982), p. 92.Google Scholar
37Warner, C. P. and Bonnell, D. A., in Interface Dynamics and Growth, edited by Liang, K.S., Anderson, M. P., Bruinsma, R. F., and Scoles, G. (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992), p. 393.Google Scholar