Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T11:19:33.271Z Has data issue: false hasContentIssue false

Chemical vapor deposition of superconducting Bi-Sr-Ca-Cu-O films using fluorocarbon-based precursors

Published online by Cambridge University Press:  31 January 2011

Masanori Nemoto
Affiliation:
Scientific Research Laboratory, Central Engineering Laboratories, Nissan Motor Co., Ltd., 1, Natsushima-cho, Yokosuka, Kanagawa 237, Japan
Mitsugu Yamanaka
Affiliation:
Scientific Research Laboratory, Central Engineering Laboratories, Nissan Motor Co., Ltd., 1, Natsushima-cho, Yokosuka, Kanagawa 237, Japan
Get access

Abstract

Superconducting Bi-Sr-Ca-Cu-O thin films have been prepared for the first time by chemical vapor deposition using triphenyl bismuth and fluorocarbon-based chelates such as bis(hexafluoroacetylacetonate)strontium, bis(hexafluoroacetylacetonate)calcium, and bis(hexafluoroacetylacetonate)copper. After annealing in air, x-ray diffraction data reveal that the films deposited on (001) SrTiO3 substrates have preferential orientation of their crystalline c-axis perpendicular to the substrate surface. Four-probe resistivity measurements reveal the onset of superconductivity at 80 K and zero resistivity at 50 K.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2 Shah, S. I., Jones, G. A., and Subramanian, M. A., Appl. Phys. Lett. 53, 429 (1988).CrossRefGoogle Scholar
3 Guarnieri, C.R., Roy, R.A., Saenger, K. L., Shivashankar, S.A., Yee, D. S., and Cuomo, J. J., Appl. Phys. Lett. 53, 532 (1988).CrossRefGoogle Scholar
4 Marshall, A. F., Oh, B., Spielman, S., Lee, M., Eom, C. B., Barton, R.W., Hammond, R. H., Kapitulnik, A., Beasley, M. R., and Geballe, T. H., Appl. Phys. Lett. 53, 426 (1988).CrossRefGoogle Scholar
5 Rice, C. E., Levi, A. F. J., Fleming, R. M., Marsh, P., Baldwin, K.W., Anzlowar, M., White, A. E., Short, K.T., Nakahara, S., and Stormer, H. L., Appl. Phys. Lett. 52, 1828 (1988).CrossRefGoogle Scholar
6 Yamane, H., Kurosawa, H., Hirai, T., Iwasaki, H., Kobayashi, N., and Muto, Y., Jpn. J. Appl. Phys. 27, L1495 (1988).CrossRefGoogle Scholar
7 Berry, A. D., Holm, R.T., Cukauskas, E. J., Fatemi, M., Gaskill, D. K., Kaplan, R., and Fox, W. B., Cryst, J.. Growth 92, 344 (1988).CrossRefGoogle Scholar
8 Zhang, J., Zhao, J., Marcy, H. O., Tonge, L. M., Wessels, B.W., Marks, T. J., and Kannewurf, C. R., Appl. Phys. Lett. 54, 1166 (1989).CrossRefGoogle Scholar
9 Shinohara, K., Munakata, F., and Yamanaka, M., Jpn. J. Appl. Phys. 27, L1683 (1988).CrossRefGoogle Scholar
10 Zhao, J., Dahmen, K. H., Marcy, H. O., Tonge, L. M., Marks, T. J., Wessels, B.W., and Kannewurf, C. R., Appl. Phys. Lett. 53, 1750 (1988).CrossRefGoogle Scholar
11 Yamane, H., Masumoto, H., Hirai, T., Iwasaki, H., Watanabe, K., Kobayashi, N., Muto, Y., and Kurosawa, H., Appl. Phys. Lett. 53, 1548 (1988).CrossRefGoogle Scholar
12 Shinohara, K., Munakata, F., and Yamanaka, M., Advances in Superconductivity, edited by Kitazawa, K. and Ishiguro, T. (Springer- Verlag, Tokyo, 1989), pp. 489, 494.Google Scholar