Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:41:54.964Z Has data issue: false hasContentIssue false

Chemical synthesis and characterization of polyaniline-molybdenum trisulfide composite

Published online by Cambridge University Press:  31 January 2011

Florence Fusalba
Affiliation:
Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
Daniel Bélanger*
Affiliation:
Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A novel polyaniline-molybdenum trisulfide composite has been prepared by chemical polymerization from an acidic (1 M HCl) aqueous solution containing aniline and ammonium tetrathiomolybdate. The presence of molybdenum trisulfide in the polyaniline matrix induces morphological change to the polymer as evidenced by scanning electron micrographs. X-ray diffraction and differential scanning calorimetry indicate that polyaniline-molybdenum trisulfide is slightly less crystalline than polyaniline-HCl. X-ray photoelectron spectroscopy (XPS) and elemental analysis have been used to confirm the presence of molybdenum trisulfide in the polymer matrix. The XPS data also confirm that molybdenum trisulfide and tetrathiomolybdate anions are present with polyaniline to form a new inorganic-organic composite.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a)Novak, P., Muller, K., Santhanam, K. S.V, and Hass, O., Chem. Rev. 97, 207 (1997);CrossRefGoogle Scholar
(b)Miller, J. S., Adv. Mater. 5, 587 (1993);CrossRefGoogle Scholar
(c)Miller, J. S., Adv. Mater. 5, 671 (1993).CrossRefGoogle Scholar
2. (a)Ozin, G. O., Adv. Mater. 4, 612 (1992);CrossRefGoogle Scholar
(b)Ruiz-Hitzky, E., Adv. Mater. 5, 334 (1993).CrossRefGoogle Scholar
3. (a)Wu, C-G., DeGroot, D.C., Marcy, H.O., Schindler, J.L., Kannewurf, C.R., Liu, Y-J., Hirpo, W., and Kanatzidis, M.G., Chem. Mater. 8, 1992 (1996);CrossRefGoogle Scholar
(b)Wang, L., Schindler, J., Thomas, J.A., Kannewurf, C.R., and Kanatzidis, M.G., Chem. Mater. 7, 1753 (1995);CrossRefGoogle Scholar
(c)Kerr, T.A., Wu, H., and Nazar, L. F., Chem. Mater. 8, 2005 (1996) and references therein.CrossRefGoogle Scholar
4.Wan, M., Shou, W., and Li, J., Synth. Met. 78, 27 (1996).CrossRefGoogle Scholar
5. (a)Gravel, L., Laperrière, G., and Bélanger, D., J. Electrochem. Soc. 137, 365 (1990);Google Scholar
(b)Girard, F., Ye, S., Laperrière, G., and Bélanger, D., J. Electroanal. Chem. 334, 35 (1992);CrossRefGoogle Scholar
(c)Ye, S., Girard, F., and Bélanger, D., in Proceedings Chemically Modified Surfaces, edited by Mottola, H. A. and Steinmetz, J. R. (Elsevier, Amsterdam, 1992), p. 319;Google Scholar
(d)Bélanger, D., Laperrière, G., Girard, F., Guay, D., and Tourillon, G., Chem. Mater. 5, 861 (1993);CrossRefGoogle Scholar
(e)Ye, S., Girard, F., and Bélanger, D., J. Phys. Chem. 97, 12373 (1993);CrossRefGoogle Scholar
(f)Girard, F., Ye, S., and Bélanger, D., J. Electrochem. Soc. 142, 2296 (1995);CrossRefGoogle Scholar
(g)Garcia, B., Roy, F., and Bélanger, D., J. Electrochem. Soc. 146, 226 (1999).CrossRefGoogle Scholar
6.Gemeay, A.H., Nishiyama, H., Kuwabata, S., and Yoneyama, H., J. Electrochem. Soc. 142, 4190 (1995) and references therein.CrossRefGoogle Scholar
7.Fusalba, F., Master Thesis, Université du Québec à Montréal, 1997.Google Scholar
8.McDonald, J. W., Friesen, G. D., Rosenheim, L. D., and Newton, W. E., Inorg. Chim. Acta 72, 205 (1983).CrossRefGoogle Scholar
9. (a)Wei, Y., Jang, G-W., Chan, C. C., Hsuch, K. F., Hariharan, R., Patel, S. A., and Whitecar, C. K., J. Phys. Chem. 94, 7716 (1990);CrossRefGoogle Scholar
(b)Tan, K. L., Tan, B. T. G., Khor, S. H., Neoh, K. G., and Kang, E. T., J. Phys. Chem. Solids 52, 673 (1991);CrossRefGoogle Scholar
(c)Neoh, K.G., Kang, E. T., and Tan, K. L., J. Phys. Chem. B 101, 726 (1997).CrossRefGoogle Scholar
10. (a)Bélanger, D., Laperrière, G., and Marsan, B., J. Electroanal. Chem. 347, 165 (1993);CrossRefGoogle Scholar
(b)Chianelli, R. R., Int. Rev. Phys. Chem. 2, 127 (1982);CrossRefGoogle Scholar
(c)Wildervanck, J. C. and Jellinek, F., Z. Anorg. Allg. Chem. 328, 309 (1964).CrossRefGoogle Scholar
11.Jones, V.W., Kalaji, M., Walker, G., Barbero, C., and Kotz, R., J. Chem. Soc. Faraday Trans. 90, 2061 (1994).CrossRefGoogle Scholar
12.Michaelson, J. C., McEvoy, A. J., and Kuramoto, N., React. Polym. 17, 197 (1992).CrossRefGoogle Scholar
13.Pouget, J. P., Jozefowicz, M. E., Epstein, A. J., Tang, X., and MacDiarmid, A. G., Macromolecules 24, 779 (1991).CrossRefGoogle Scholar
14.Laperrière, G., Lavoie, M-A., and Bélanger, D., J. Electrochem. Soc. 143, 3109 (1996).CrossRefGoogle Scholar
15.Chan, H. S. O., Ng, S. C., Sim, W. S., Tan, K. L., and Tan, B. T. G., Macromolecules 25, 6029 (1992).CrossRefGoogle Scholar
16.Chen, S-A. and Fang, W-G., Macromolecules 24, 1242 (1991).CrossRefGoogle Scholar
17.Wang, S., Wang, F., and Ge, X., Synth. Met. 16, 99 (1986).Google Scholar
18.Wei, Y., Jang, G. W., Hsueh, K. F., Scherr, E. M., MacDiarmid, A. G., and Epstein, A. J., Polymer 33, 314 (1992).CrossRefGoogle Scholar
19.Chan, H. S. O., Ho, P. K. H., Khor, E., Tan, M. M., Tan, T. L., Tan, B. T. G., and Lim, Y. K., Synth. Met. 31, 95 (1989).CrossRefGoogle Scholar
20.Palaniappan, S. and Narayana, B.H., J. Polym. Sci.: Part A: Polym. Chem. 32, 2341 (1994).CrossRefGoogle Scholar
21.Guay, D., Tourillon, G., Laperrière, G., and Bélanger, D., J. Phys. Chem. 96, 7718 (1992).CrossRefGoogle Scholar
22.Osaka, T., Nakajima, R., Shiota, K., and Momma, T., J. Electrochem. Soc. 138, 2853 (1992).CrossRefGoogle Scholar
23.Kang, E.T., Neoh, K.G., Tan, K.L., Uyama, Y., Morikawa, N., and Ikada, Y., Macromolecules 25, 1959 (1992).CrossRefGoogle Scholar
24.Chattopadhyay, D. and Mandal, B.M., Langmuir 12, 1585 (1996).CrossRefGoogle Scholar
25.Chen, S-A. and Lee, H-T., Macromolecules 28, 2858 (1995).CrossRefGoogle Scholar
26. (a)Tan, K. L., Tan, B. T. G., Kang, E. T., and Neoh, K. G., Phys. Rev. B39, 8070 (1989);CrossRefGoogle Scholar
(b)Tan, K. L., Tan, B. T. G., Kang, E. T., and Neoh, K. G., J. Chem. Phys. 94, 5382 (1991);CrossRefGoogle Scholar
(c)Kang, E. T., Neoh, K. G., Tan, K. L., and Ridge, K., Adv. Polym. Sci. 106, 135 (1993).CrossRefGoogle Scholar
27.Chan, H. S. O., Ho, P. K. H., Tan, B. T. G., and Tan, K. L., J. Am. Chem. Soc. 117, 8517 (1995).CrossRefGoogle Scholar
28.Snauwert, P., Lazzaroni, R., Riga, J., Verbist, J. J., and Gonbeau, D. H., Chem. Phys. 92, 2918 (1990).Google Scholar
29.Yue, J. and Epstein, A. J., Macromolecules 24, 4441 (1991).CrossRefGoogle Scholar
30.Chen, S-A. and Hwang, G.W., J. Am. Chem. Soc. 117, 10055 (1995).CrossRefGoogle Scholar
31.Dziembaj, R. and Piwowarska, Z., Synth. Met. 63, 225 (1994).CrossRefGoogle Scholar
32.Ray, A., Austurias, G. E., Kershner, D. L., Richter, A. F., MacDiarmid, A. G., and Epstein, A. J., Synth. Met. 29, E141 (1989).CrossRefGoogle Scholar
33. (a)Friedman, R. M., Hudis, J., and Perlman, M. L., Phys. Rev. Lett. 29, 692 (1972);CrossRefGoogle Scholar
(b)Hendrickson, D. N., Hollander, J. M., and Jolly, W. I., Inorg. Chem. 8, 2642 (1969).CrossRefGoogle Scholar
34.Weber, Th., Muijsers, J. C., and Niemantsverdriet, J. W., J. Phys. Chem. 99, 9194 (1995).CrossRefGoogle Scholar