Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T11:41:51.812Z Has data issue: false hasContentIssue false

Chemical, structural, and morphological characterization of tungsten nanoparticles synthesized by a facile chemical route

Published online by Cambridge University Press:  18 February 2011

Prasanta Kumar Sahoo*
Affiliation:
Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India
Sarika Srinivas
Affiliation:
Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India
Kalyan Kamal
Affiliation:
Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India
Loganathan Durai
Affiliation:
Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India
Bojja Sreedhar
Affiliation:
Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Tungsten nanoparticles (W-NPs) with average sizes ranging between 30 and 80 nm were prepared by thermolytic decomposition of tungsten hexacarbonyl in presence of a mixture of surfactants, oleic acid and oleyl amine. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy (XPS) results reveal that the surfactants oleic acid and oleyl amine bonded to the surface of W-NP through their functional groups, which in turn render stability to the nanopowders with respect to coarsening or aggregation. XPS results also confirm that carbon is present only at the surface of the W-NPs. The as-synthesized W-NPs were amorphous, and on heat treatment at 600 °C for 1 h, the amorphous powders transform into a body-centered cubic crystalline form (α-W).

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bao, J.-X. and Wan, B.-F.: The tungsten powder study of the dispenser cathode. Appl. Surf. Sci. 252, 5873 (2006).CrossRefGoogle Scholar
2.Selcuk, C. and Wood, J.V.: Reactive sintering of porous tungsten: A cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps. J. Mater. Process. Technol. 170, 471 (2005).CrossRefGoogle Scholar
3.Bless, S.J., Tarcza, K., Chau, R., Taleff, E., and Persad, C.: Dynamic fracture of tungsten heavy alloys. Int. J. Impact Eng. 33, 100 (2006).CrossRefGoogle Scholar
4.Ryu, T., Sohn, H.Y., Hwang, K.S., and Fang, Z.S.: Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int. J. Refract. Met. Hard Mater. 27, 149 (2009).CrossRefGoogle Scholar
5.Samanta, S.K., Yoo, W.J., Samudra, G., Tok, E.S., Bera, L.K., and Balasubramanian, N.: Tungsten nanocrystals embedded in high-k materials for memory application. Appl. Phys. Lett. 87, 113110 (2005).CrossRefGoogle Scholar
6.Chen, G.S., Yang, L.C., Tian, H.S., and Hsu, C.S.: Evaluating substrate bias on the phase-forming behavior of tungsten thin films deposited by diode and ionized magnetron sputtering. Thin Solid Films 484, 83 (2005).CrossRefGoogle Scholar
7.Bouziane, K., Mamor, M., and Meyer, F.: DC magnetron sputtered tungsten: W film properties and electrical properties of W/Si Schottky diodes. Appl. Phys. A Mater. Sci. Process. 81, 209 (2005).CrossRefGoogle Scholar
8.Villain, P., Goudeau, P., Ligot, J., Benayoun, S., Badawi, K.F., and Hantzpergue, J.J.: X-ray diffraction study of residual stresses and microstructure in tungsten thin films sputter deposited on polyimide. J. Vac. Sci. Technol. A 21, 967 (2003).CrossRefGoogle Scholar
9.Rossnagel, S.M., Noyan, I.C., and Cabral, C.: Phase transformation of thin sputter-deposited tungsten films at room temperature. J. Vac. Sci. Technol. B 20, 2047 (2002).CrossRefGoogle Scholar
10.Liu, M.X., Huang, Y.L., Ma, F., and Xu, K.W.: Template-induced formation of α-W and size-dependent properties of tungsten thin films. Mater. Sci. Eng. B 139, 99 (2007).CrossRefGoogle Scholar
11.German, R.M., Ma, J., Wang, X., and Olevsky, E.: Processing model for tungsten powders and extension to nanoscale size range. Powder Metall. 49, 19 (2006).CrossRefGoogle Scholar
12.Malewar, R., Kumar, K.S., Murty, B.S., Sarma, B., and Pabi, S.K.: On sinterability of nanostructured W produced by high-energy ball milling. J. Mater. Res. 22, 1200 (2007).CrossRefGoogle Scholar
13.Magnusson, M.H., Deppert, K., and Malm, J-O.: Single-crystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl. J. Mater. Res. 15, 1564 (2000).CrossRefGoogle Scholar
14.Gromov, A., Kwon, Y.S., and Choi, P.P.: Interaction of tungsten nanopowders with air under different conditions. Scr. Mater. 52, 375 (2005).CrossRefGoogle Scholar
15.Ricceri, R. and Matteazzi, P.: A study of formation of nanometric W by room temperature mechanosynthesis. J. Alloy. Comp. 358, 71 (2003).CrossRefGoogle Scholar
16.Nersisyan, H.H., Lee, J.H., and Won, C.W.: A study of tungsten nanopowder formation by self-propagation high-temperature synthesis. Combust. Flame 142, 241 (2005).CrossRefGoogle Scholar
17.Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
18.Axelbaum, R.L., Huertas, J.I., Lottles, C.R., Hariprasad, S., and Sastry, S.M.L.: Nano-phase W and W-Ti composite via gas-phase combustion synthesis. Mater. Manuf. Processes 11, 1043 (1996).CrossRefGoogle Scholar
19.Chang, Y.H., Wang, H.W., Chiu, C.W., Cheng, D.S., Yen, M.Y., and Chiu, H.T.: Low-temperature synthesis of transition metal nanoparticles from metal complexes and organopolysilane oligomers. Chem. Mater. 14, 4334 (2002).CrossRefGoogle Scholar
20.Gao, Y., Zhao, J., Zhu, Y., Ma, S., Su, X., and Wang, Z.: Wet chemical process of rod-like tungsten nano-powders with iron (II) as reductive agent. Mater. Lett. 60, 3903 (2006).CrossRefGoogle Scholar
21.Welham, N.J.: Room temperature reduction of scheelite (CaWO4). J. Mater. Res. 14, 619 (1999).CrossRefGoogle Scholar
22.Sahoo, P.K., Kamal, S.S.K., Premkumar, M., Jagadeesh Kumar, T., Sreedhar, B., Singh, A.K., Srivastava, S.K., and Chandra Sekhar, K.: Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl. Int. J. Refract. Met. Hard. Mater. 27, 784 (2009).CrossRefGoogle Scholar
23.Esumi, K.K., Tano, T., Torigoe, K., and Meguro, K.: Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compounds in organic solvents. Chem. Mater. 2, 564 (1990).CrossRefGoogle Scholar
24.Yan, L. and Jie, L.: Preparation of monodispersed Fe−Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13, 1008 (2001).Google Scholar
25.Shukla, N., Liu, C., Jones, P.M., and Weller, D.: FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater. 226, 178 (2003).CrossRefGoogle Scholar
26.Nath, S., Praharaj, S., Panigrahi, S., Kundu, S., Ghosh, S.K., Basu, S., and Pal, T.: Hexadecylamine capped silver organosol: A substrate for surface-enhanced Raman scattering. Colloids Surf. A Physicochem. Eng. Asp. 274, 145 (2006).CrossRefGoogle Scholar
27.Wu, N., Fu, L., Su, M., Aslam, M., Wong, K.C., and Dravid, V.P.: Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4, 383 (2004).CrossRefGoogle Scholar
28.Li, Z., Chen, H., Bao, H., and Gao, M.: One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem. Mater. 16, 1391 (2004).CrossRefGoogle Scholar
29.Krasovskii, P.V., Blagoveshchenskii, Yu.V., and Grigorovich, K.V.: Determination of oxygen in W-C-Co Nanopowders. Inorg. Mater. 44, 954 (2008).CrossRefGoogle Scholar
30.Kamal, S.S.K., Sahoo, P.K., Vimala, J., and Durai, L.: Determination of oxygen and nitrogen in Ag nanoparticles: Role of surfactants. Adv. Sci. Lett. 3, 1 (2010).CrossRefGoogle Scholar