Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T14:06:13.787Z Has data issue: false hasContentIssue false

Chemical stability of CuInS2 in oxygen at 298 K

Published online by Cambridge University Press:  31 January 2011

J. Grzanna
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Straβe 100, D-14109 Berlin, Germany
H. Migge
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Straβe 100, D-14109 Berlin, Germany
Get access

Abstract

A thermochemical analysis is performed in the quaternary system Cu–In–S–O at 298 K, including the respective four ternaries. The Cu–In phase diagram is updated with respect to the new experimental as well as to the new thermochemical results in the literature. Free energies of In6S7, In2.8S4, CuIn2, and Cu2In2O5 have been estimated. Consistent sets of data are used for the calculations of the ternary systems with the program thermo, and the results are used to calculate the quaternary tetrahedron Cu–In–S–O with the program thermoq; the algorithm is given. Twelve quaternary two-phase equilibria have been found. They are used to calculate predominance area diagrams of the quaternary system with the program stadiaq for different oxygen partial pressures. The algorithm of this program is given. From these diagrams it becomes obvious that CuInS2 is unstable in air and even in UHV systems and should react to form In2(SO4)3 and Cu2S at oxygen pressures larger than log p (pascal) = −51.5. The results are useful for research in fields such as oxidation and crystal growth of CuInS2 and for development of processes for producing this compound.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goslowsky, H., Fiechter, S., Könenkamp, R., and Lewerenz, H. J., Solar Energy Mater. 13, 221 (1986).CrossRefGoogle Scholar
2.Kazmerski, L. L. and Sanborn, G. A., J. Appl. Phys. 48, 3178 (1977).CrossRefGoogle Scholar
3.Wu, Y. L., Lin, H.Y., Sun, C. Y., Yang, M. H., and Hwang, H. L., Thin Solid Films 168, 113 (1989).CrossRefGoogle Scholar
4.Takenoshita, H. and Nakau, T., Jpn. J. Appl. Phys. 21 (1), 18 (1982).CrossRefGoogle Scholar
5.Hsu, H. J., Yang, M. H., Tang, R. S., Hsu, T. M., and Hwang, H. L., J. Cryst. Growth 70, 427 (1984).CrossRefGoogle Scholar
6.Fleming, G. J., Fearheiley, M. L., and Lewerenz, H. J., J. Electrochem. Soc. 136 (5), 1506 (1989).CrossRefGoogle Scholar
7.Scheer, R., Walther, T., Schock, H. W., Fearheiley, M. L., and Lewerenz, H. J., Appl. Phys. Lett. 63 (24), 3294 (1993).CrossRefGoogle Scholar
8.Metzner, H., Brüެer, M., Husemann, K. D., and Lewerenz, H. J., Phys. Rev. B 44, 11 614 (1991).CrossRefGoogle Scholar
9.Fearheiley, M. L., Dietz, N., Birkholz, M., and Höpfner, C., J. Electron. Mater. 20, 175 (1991).CrossRefGoogle Scholar
10.Fearheiley, M. L., Dietz, N., Scheer, R., and Lewerenz, H. J., Proc. XIIIth State-of-the-Art Program on Compound Semiconductors, Seattle, WA, October 14–18, 1990.Google Scholar
11.Binsma, J. J. M., Giling, L. J., and Bloem, J., J. Cryst. Growth 50, 429 (1980).CrossRefGoogle Scholar
12.Migge, H., J. Mater. Res. 6, 2381 (1991).CrossRefGoogle Scholar
13.Migge, H. and Grzanna, J., J. Mater. Res. 9, 125 (1994).CrossRefGoogle Scholar
14.Bolcavage, A., Chen, S. W., Kao, C. R., Chang, Y. A., and Romig, A. D., Jr., J. Phase Equilibria 14, 14 (1993).CrossRefGoogle Scholar
15.Kao, C. R., Bolcavage, A., Chen, S. L., Chen, S. W., Chang, Y. A., and Romig, A. D., Jr., J. Phase Equilibria 14, 22 (1993).CrossRefGoogle Scholar
16.Subramanian, P. R. and Laughlin, D. E., Bull. Alloy Phase Diagrams 10, 554 (1989).CrossRefGoogle Scholar
17.Chang, Y. A., private communication (August 1993).Google Scholar
18.Mills, K. C., Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides (Butterworths, London, 1974).Google Scholar
19.Chakrabarti, D. J. and Laughlin, D. E., Bull. Alloy Phase Diagrams 4, 254 (1983).CrossRefGoogle Scholar
20.Barin, J., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973, Suppl. 1977).Google Scholar
21.Chang, Y. A. and Hsieh, K-Ch., Phase Diagrams of Ternary Copper-Oxygen-Metal Systems, Monograph Series on Alloy Phase Diagrams (ASM, Metals Park, OH, 1989), p. 61, system Cu–O–In.Google Scholar
22.Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, New York, 1979).Google Scholar
23.Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., The NBS Tables of Chemical Thermodynamic Properties, in J. Phys. Chem. Ref. Data 11, Suppl. (1982).Google Scholar
24.Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., Kelly, K. K., and Wagman, D. D., Selected Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, OH, 1973).Google Scholar
25.JANAF Thermochemical Tables, 3rd ed., in J. Phys. Chem. Ref. Data 14, Suppl. (1985).Google Scholar
26.Schmidt, D., Präparation und Charakterisierung von CuInS2–Oberflächen mit UPS und XPS, Diplomarbeit Technische Universit ät Berlin, Fachbereich Physik 04, Juni 1994 (in German).Google Scholar
27.Lewerenz, H-J., private communication (1995).Google Scholar