Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T12:58:45.144Z Has data issue: false hasContentIssue false

Chemical solution deposited GaN films from oxygen- and nitrogen-based precursors

Published online by Cambridge University Press:  31 January 2011

David Kisailus
Affiliation:
Department of Materials Engineering, University of California, Santa Barbara, California 93106
Joon Hwan Choi
Affiliation:
Department of Materials Engineering, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Department of Materials Engineering, University of California, Santa Barbara, California 93106
Get access

Abstract

GaN films were produced by the chemical solution deposition method (CSD) using two different precursors—gallium dimethyl amide (GDA; containing gallium–nitrogen bonds) and gallium isopropoxide (GIP; containing gallium–oxygen bonds). Pyrolysis of the GDA film at 600 °C produced a continuous layer of GaN grains with a single orientational relation with the substrate [GaN (0001) ∥ Al2O3 (0001) and GaN (1010) ∥ Al2O3 (1120)], and an overlying polycrystalline film. At temperatures greater than 600 °C, the oriented grains consumed the polycrystalline layer via an evaporation–condensation mass transport. Pyrolysis of the GIP films at 600 °C produced a continuous layer of gallium oxynitride having the corundum structure [i.e., α–Ga2O(3−x)N2/3x] with an epitaxial relation to the substrate (α–Ga2O(3−x)N2/3x[0001] ∥ Al2O3 [0001] and α–Ga2O(3−x)N2/3x [1010] ∥ Al2O3 [1120]), and an overlaying polycrystalline gallium oxynitride film with a spinel structure. Increasing temperature caused growth of oriented grains in contact with the substrate and conversion of the oxynitride to wurtzite GaN at 800 °C. Room-temperature (300 K) and low-temperature(77 K) photoluminescence measurements behaved similarly to metal-organic chemical vapor deposition based GaN with additional photoluminescence most likely due to nitrogen vacancy impurities.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nakamura, S., Appl. Phys. Lett. 64, 1687 (1994).CrossRefGoogle Scholar
2.Lange, F.F., Science 273, 903 (1996).CrossRefGoogle Scholar
3.Evans, A.G., Drory, M.D., and Hu, M.S., J. Mater. Res. 3, 1043 (1988).CrossRefGoogle Scholar
4.Hutchinson, J.W. and Suo, Z., Adv. Appl. Mech. 29, 63 (1992).CrossRefGoogle Scholar
5.Miller, K.T., Lange, F.F., and Marshall, D.B., J. Mater. Res. 5, 151 (1990).CrossRefGoogle Scholar
6.Miller, K.T., Chan, C.J., Cain, M.G., and Lange, F.F., J. Mater. Res. 8, 169 (1993).CrossRefGoogle Scholar
7.Derouin, T.A., Lakeman, C.D.E., Wu, X.H., Speck, J.S., and Lange, F.F., J. Mater. Res. 12, 1391 (1997).CrossRefGoogle Scholar
8.Vaidya, K., Yang, C.Y., DeGraef, M., and Lange, F.F., J. Mater. Res. 9, 410 (1994).CrossRefGoogle Scholar
9.Thompson, C.V., Ann. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
10.Thompson, C.V., Floro, J., and Smith, H.I., J. Appl. Phys. 67, 4099 (1990).CrossRefGoogle Scholar
11.Miller, K.T. and Lange, F.F., J. Mater. Res. 6, 2387 (1991).CrossRefGoogle Scholar
12.Puchinger, M., Wagner, T., Rodewald, D., Bill, J., Aldinger, F., and Lange, F.F., J. Cryst. Growth 208, 153 (2000).CrossRefGoogle Scholar
13.Parala, H., Devi, A., Wohlfart, A., Winter, M., and Fischer, R.A., Adv. Functional Mater. 11, 224 (2001).3.0.CO;2-4>CrossRefGoogle Scholar
14.Puchinger, M., Wagner, T., Fini, P., Kisailus, D., Beck, U., Bill, J., Artz, E., and Lange, F.F., J. Cryst. Growth 233, 57 (2001).CrossRefGoogle Scholar
15.Puchinger, M., Kisailus, D.J., Lange, F.F., and Wagner, T., J. Mater. Res. 17, 353 (2002).CrossRefGoogle Scholar
16.Bornside, D., Macosko, C., and Scriven, L., J. Imag. Technol. 13, 122 (1987).Google Scholar
17.Powder Diffraction File No. 20-0426, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
18.Speck, J.S. and Rosner, S.J., Physica B 273–274, 24 (1999).CrossRefGoogle Scholar
19.Wu, X.H., Fini, P., Tarsa, E.J., Heying, B., Keller, S., Mishra, U., Baars, S.P., and Speak, J.S., J. Cryst. Growth 189/190, 231 (1998).CrossRefGoogle Scholar
20.Kisailus, D., Choi, J.H., and Lange, F.F., J. Cryst. Growth (in press).Google Scholar
21.Balkas, R. and Davis, R., J. Am. Ceram. Soc. 79, (1996).CrossRefGoogle Scholar
22.Lorenz, M.R. and Binkowski, B.B., J. Electrochem. Soc. 24, 223 (1962).Google Scholar