Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T22:49:33.392Z Has data issue: false hasContentIssue false

Chemical preparation and properties of high-field zinc oxide varistors

Published online by Cambridge University Press:  03 March 2011

R. G. Dosch
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, New Mexico 87185
B. A. Tuttle
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, New Mexico 87185
R. A. Brooks
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, New Mexico 87185
Get access

Abstract

Chemical preparation methods were developed for high-field ZnO varistors which used precipitation techniques to prepare precursor powders. Varistors were made by sintering uniaxially pressed pellets in the range of 675°–740 °C in air. Properties of these varistors included electric fields (E) in the 10–100 kV/cm range at current densities (J) of 5 A/cm2, nonlinearity coefficients (α) greater than 30 for 2.5≤J≤5.O A/cm2, and densities in the range of 65%-99% of theoretical depending both on sintering temperature and composition.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Matsuoka, M., Jpn. J. Appl. Phys. 10, 736 (1971).Google Scholar
2Morris, W. G., J. Vac. Sci. Technol. 13, 926 (1976).Google Scholar
3Wong, J., J. Appl. Phys. 51, 4453 (1980).Google Scholar
4Levin, E. M. and Roth, R. S., J. Res. Natl. Bur. Stand., Sect. A 68(2), 197 (1964).Google Scholar
5Kingery, W. D., VanderSande, J. B., and Mitamura, T., J. Am. Ceram. Soc. 62(34), 221 (1979).Google Scholar
6Clarke, D. R., J. Appl. Phys. 50, 6829 (1979).Google Scholar
7Gambino, J. P., Ph.D. thesis, Massachusetts Institute of Technology, 1984.Google Scholar
8Levinson, L. M. and Philipp, H. R., J. Appl. Phys. 46, 1332 (1975).Google Scholar
9Clarke, D. R., J. Appl. Phys. 49, 2407 (1978).CrossRefGoogle Scholar
10Pike, G. E., Mater. Res. Soc. Proc. 5, 369 (1982).CrossRefGoogle Scholar
11Miyoshi, T., Maeda, K., Takahashi, K., and Yamazaki, T., Adv. Ceram. 1, 309 (1981).Google Scholar
12Williams, P., Krivanek, D. L., Thomas, G., and Yodogawa, M., J. Appl. Phys. 5, 3930 (1980).CrossRefGoogle Scholar
13Bowen, L. J. and Avella, F. J., J. Appl. Phys. 54, 2764 (1983).CrossRefGoogle Scholar
14van Kemednade, J. T. C. and Eijnthoven, R. K., Ber. Dtsch. Keram. Ges. 55(6), 330 (1978).Google Scholar
15Emtage, P. R., J. Appl. Phys. 48, 4372 (1977).CrossRefGoogle Scholar
16Snow, G. S., White, J. S., Cooper, R. A., and Armijo, J. R., Am. Ceram. Soc. Bull. 59, 617 (1980).Google Scholar
17Lauf, R. J. and Bond, W. D., Am. Ceram. Soc. Bull. 63, 270 (1984).Google Scholar
18Dosch, R. G., Sandia National Laboratories Report No. SAND850195, September 1985.Google Scholar
19Dosch, R. G., in the Proceedings of the Second International Conference on Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D. R. (Wiley, New York, to be published).Google Scholar
20Brooks, R. A. and Dosch, R. G., Sandia National Laboratory (unpublished results).Google Scholar
21Feitknecht, W., Helv. Chim. Acta 13, 314 (1930).CrossRefGoogle Scholar