Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T17:13:56.809Z Has data issue: false hasContentIssue false

Chemical deterioration of Al film prepared on CF4 plasma-etched LiNbO3 surface

Published online by Cambridge University Press:  31 January 2011

Hirotoshi Nagata*
Affiliation:
Optoelectronics Research Division, New Technology Research Laboratories, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274-8601, Japan
Yasuyuki Miyama
Affiliation:
Optoelectronics Research Division, New Technology Research Laboratories, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274-8601, Japan
Naoki Mitsugi
Affiliation:
Optoelectronics Research Division, New Technology Research Laboratories, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274-8601, Japan
Kaori Shima
Affiliation:
Advanced Materials Research Division, New Technology Research Laboratories, Sumitomo Osaka Cement Co., Ltd., 585 Toyotomi-cho, Funabashi-shi, Chiba 274-8601, Japan
*
a)Address correspondence to this author.[email protected]
Get access

Abstract

The fabrication process of an Al thin-film optical polarizer on LiNbO3 waveguides after CF4 plasma dry etching of a previously deposited SiO2 buffer layer was investigated. The problem in this process is a precipitation of compounds containing C, O, F, and Li on the etched LiNbO3 surface and a chemical deterioration of the Al caused by a reaction with these precipitates. Most notably, the growth of amorphous phase in addition to the crystalline Al metal grains and a partial oxidization of Al were found at the interface using transmission electron microscopy and x-ray photoelectron spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nagata, H., Fujino, T., Mitsugi, N., and Tamai, M., Thin Solid Films 335, 117 (1998).CrossRefGoogle Scholar
2.Nagata, H., Shinriki, T., Shima, K., Tamai, M., and Haga, E.M., J. Vac. Sci. Technol. A 17, 1018 (1999).CrossRefGoogle Scholar
3.Noguchi, K., Mitomi, O., Miyazawa, H., and Seki, S., J. Lightwave Technol. 13, 1164 (1995).CrossRefGoogle Scholar
4.Jackel, J.L., Howard, R.E., Hu, E.L., and Lyman, S.P., Appl. Phys. Lett. 38, 907 (1981).CrossRefGoogle Scholar
5.Shima, K., Mitsugi, N., and Nagata, H., J. Mater. Res. 13, 527 (1996).CrossRefGoogle Scholar
6.Nagata, H., Mitsugi, N., Shima, K., Tamai, M., and Haga, E.M., J. Cryst. Growth 187, 573 (1998).CrossRefGoogle Scholar
7.Mitsugi, N., Nagata, H., Shima, K., and Tamai, M., J. Vac. Sci. Technol. A 16, 2245 (1998).CrossRefGoogle Scholar
8.Suematsu, Y., Hakuta, M., Furuya, K., Chiba, K., and Hasumi, R., Appl. Phys. Lett. 21, 291 (1972).CrossRefGoogle Scholar
9.Nagata, H., Takahashi, H., Takai, H., and Kougo, T., Jpn. J. Appl. Phys. 34, 606 (1995).CrossRefGoogle Scholar
10.Nagata, H., Mitsugi, N., Sakamoto, T., Shima, K., Tamai, M., and Haga, E.M., J. Appl. Phys. 86, 6342 (1999).CrossRefGoogle Scholar