Published online by Cambridge University Press: 31 January 2011
Aiming to bind molecules without O-containing groups such as the –OH or –COOH functional groups, a new two-step method involving thermal activation and followed by an in situ chemical reaction was suggested, and the binding of the pyridine molecule on TiO2 nanocrystalline films was realized. UV-Vis, FTIR, and XPS characterizations revealed that pyridine molecules are chemically linked to the TiO2 surface by forming Ti-pyridine bonds. Mott-Schottky measurements indicated that the binding of pyridine results in a positive shift of the flat band potential for TiO2 nanocrystalline film, which is attributed to the alternating surface dipole moment of TiO2 nanocrystals upon pyridine binding. Electrochemical and photoelectrochemical investigations indicated that the binding of pyridine on TiO2 nanocrystalline film has high electrochemical and photoelectrochemical stability.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.