Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T01:11:09.717Z Has data issue: false hasContentIssue false

Characterizing phonon thermal conduction in polycrystalline graphene

Published online by Cambridge University Press:  10 January 2014

Yanlei Wang
Affiliation:
Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
Zhigong Song
Affiliation:
Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
Zhiping Xu*
Affiliation:
Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Phonon thermal conduction was explored and discussed through a combined theoretical and simulation approach in this work. The thermal conductivity κ of polycrystalline graphene was calculated by molecular dynamics simulations based on a hexagonal patch model in close consistency with microstructural characterization in experiments. The effects of grain size, alignment, and temperature were identified with discussion on the microscopic phonon scattering mechanisms. The effective thermal conductivity was found to increase with the grain size and decrease with the mismatch angle and dislocation density at the grain boundaries (GBs). The ∼T−1 temperature dependence of κ is significantly weakened in the polycrystals. The effect of GBs in modifying thermal transport properties of graphene was characterized by their effective width and thermal conductivity as an individual phase, which was later included in a predictive effective medium model that showed degraded reduction in thermal conductivity for grains larger than a few micrometers.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902 (2008).CrossRefGoogle ScholarPubMed
Grosse, K.L., Bae, M-H., Lian, F., Pop, E., and King, W.P.: Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotechnol. 6(5), 287 (2011).Google Scholar
Wang, H., Gong, J., Pei, Y., and Xu, Z.: Thermal transfer in graphene-interfaced materials: Contact resistance and interface engineering. ACS Appl. Mater. Interfaces 5(7), 2599 (2013).Google Scholar
Shahil, K.M.F. and Balandin, A.A.: Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861 (2012).Google Scholar
Shinde, S.L. and Goela, J.: High Thermal Conductivity Materials (Springer, New York, NY, 2006).Google Scholar
Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96 (2006).Google Scholar
Yakobson, B.I. and Ding, F.: Observational geology of graphene, at the nanoscale. ACS Nano 5(3), 1569 (2011).Google Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y-J., Kim, K.S., Ozyilmaz, B., Ahn, J-H., Hong, B.H., and Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574 (2010).Google Scholar
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., and Muller, A.: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature (London) 469(7330), 389 (2011).Google Scholar
Nika, D.L., Askerov, A.S., and Balandin, A.A.: Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 12(6), 3238 (2012).Google Scholar
Denis, L.N. and Alexander, A.B.: Two-dimensional phonon transport in graphene. J. Phys. Condens. Matter 24(23), 233203 (2012).Google Scholar
Zhang, H., Lee, G., Fonseca, A.F., Borders, T.L., and Cho, K.: Isotope effect on the thermal conductivity of graphene. J. Nanomater. 2010, 7 (2010).CrossRefGoogle Scholar
Wei, N., Xu, L., Wang, H-Q., and Zheng, J-C.: Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 22(10), 105705 (2011).Google Scholar
Evans, W.J., Hu, L., and Keblinski, P.: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96(20), 203112 (2010).Google Scholar
Balandin, A.A. and Nika, D.L.: Phononics in low-dimensional materials. Mater. Today 15(6), 266 (2012).CrossRefGoogle Scholar
Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569 (2011).Google Scholar
Geng, D., Wu, B., Guo, Y., Huang, L., Xue, Y., Chen, J., Yu, G., Jiang, L., Hu, W., and Liu, Y.: Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. U.S.A. 109(21), 7992 (2012).CrossRefGoogle ScholarPubMed
Garg, J. and Chen, G.: Minimum thermal conductivity in superlattices: A first-principles formalism. Phys. Rev. B 87(14), 140302 (2013).Google Scholar
Capinski, W.S. and Maris, H.J.: Thermal conductivity of GaAs/AlAs superlattices. Physica B 219, 699 (1996).CrossRefGoogle Scholar
Venkatasubramanian, R.: Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61(4), 3091 (2000).Google Scholar
Chen, G.: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57(23), 14958 (1998).Google Scholar
Bagri, A., Kim, S-P., Ruoff, R.S., and Shenoy, V.B.: Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 11(9), 3917 (2011).Google Scholar
Cao, A. and Qu, J.: Kapitza conductance of symmetric tilt grain boundaries in graphene. J. Appl. Phys. 111(5), 053529 (2012).CrossRefGoogle Scholar
Serov, A.Y., Ong, Z-Y., and Pop, E.: Effect of grain boundaries on thermal transport in graphene. Appl. Phys. Lett. 102(3), 033104 (2013).Google Scholar
Kotakoski, J. and Meyer, J.C.: Mechanical properties of polycrystalline graphene based on a realistic atomistic model. Phys. Rev. B 85(19), 195447 (2012).Google Scholar
Tuan, D.V., Kotakoski, J., Louvet, T., Ortmann, F., Meyer, J.C., and Roche, S.: Scaling properties of charge transport in polycrystalline graphene. Nano Lett. 13(4), 1730 (2013).Google Scholar
Song, Z., Artyukhov, V.I., Yakobson, B.I., and Xu, Z.: Pseudo Hall-Petch strength reduction in polycrystalline graphene. Nano Lett. 13(4), 1829 (2013).Google Scholar
Wu, Y.A., Fan, Y., Speller, S., Creeth, G.L., Sadowski, J.T., He, K., Robertson, A.W., Allen, C.S., and Warner, J.H.: Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano 6(6), 5010 (2012).Google Scholar
Hasselman, D.P.H. and Johnson, L.F.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21(6), 508 (1987).CrossRefGoogle Scholar
Nan, C-W., Birringer, R., Clarke, D.R., and Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692 (1997).Google Scholar
Hao, F., Fang, D., and Xu, Z.: Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 99(4), 041901 (2011).CrossRefGoogle Scholar
Hao, F., Fang, D., and Xu, Z.: Thermal transport in crystalline Si/Ge nano-composites: Atomistic simulations and microscopic models. Appl. Phys. Lett. 100(9), 091903 (2012).Google Scholar
Yazyev, O.V. and Louie, S.G.: Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81(19), 195420 (2010).Google Scholar
Schelling, P.K., Phillpot, S.R., and Keblinski, P.: Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65(14), 144306 (2002).Google Scholar
Hardy, R.J.: Energy-flux operator for a lattice. Phys. Rev. 132(1), 168 (1963).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995).Google Scholar
Lindsay, L. and Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81(20), 205441 (2010).Google Scholar
Savin, A.V., Kosevich, Y.A., and Cantarero, A.: Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. Phys. Rev. B 86(6), 064305 (2012).Google Scholar
Hull, D. and Bacon, D.J.: Introduction to Dislocations (Butterworth-Heinemann, Oxford, UK, 2001).Google Scholar
Ziman, J.M.: Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, UK, 2001).Google Scholar
Xu, Z. and Buehler, M.J.: Heat dissipation at a graphene–substrate interface. J. Phys. Condens. Matter 24(47), 475305 (2012).Google Scholar
Chang, S.W., Nair, A.K., and Buehler, M.J.: Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites. J. Phys. Condens. Matter 24(24), 245301 (2012).Google Scholar
Carpenter, R.G.: Principles and procedures of statistics, with special reference to the biological sciences. Eugen. Rev. 52(3), 172 (1960).Google Scholar
Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., and Ruoff, R.S.: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645 (2010).Google Scholar
Wei, Y., Wu, J., Yin, H., Shi, X., Yang, R., and Dresselhaus, M.: The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat. Mater. 11(9), 759 (2012).Google Scholar
Srivastava, G.P. and Kresin, V.: The Physics of Phonons (Taylor & Francis, New York, NY, 1990).Google Scholar
Kim, W. and Majumdar, A.: Phonon scattering cross section of polydispersed spherical nanoparticles. J. Appl. Phys. 99(8), 084306 (2006).Google Scholar
Berman, R.: Thermal Conduction in Solids (Oxford University Press, Oxford, UK, 1976).Google Scholar
Politano, A., Borca, B., Minniti, M., Hinarejos, J.J., de Parga, A.L.V., and Farias, D., and Miranda, R.: Helium reflectivity and Debye temperature of graphene grown epitaxially on Ru(0001). Phys. Rev. B 84(3), 035450 (2011).Google Scholar
Pop, E., Varshney, V., and Roy, A.K.: Thermal properties of graphene: Fundamentals and applications. MRS Bull. 37(12), 1273 (2012).Google Scholar
Kim, P., Shi, L., Majumdar, A., and McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 215502 (2001).Google Scholar
Nika, D.L., Pokatilov, E.P., Askerov, A.S., and Balandin, A.A.: Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79(15), 155413 (2009).Google Scholar