Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T06:33:22.709Z Has data issue: false hasContentIssue false

Characterizing interface dislocations by atomically informed Frank-Bilby theory

Published online by Cambridge University Press:  24 April 2013

Jian Wang*
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545
Ruifeng Zhang
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545
Caizhi Zhou
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545
Irene J. Beyerlein
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545
Amit Misra
Affiliation:
Materials Physics & Applications, The Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Semicoherent interfaces containing discrete dislocations are more energetically favorable than those containing continuous distributions because of lower chemical energy. The classical Frank-Bilby theory provided a way to determine the interface Burgers vectors content but could not effectively predict the characteristics of discrete dislocations. Atomistic simulations provide insights into analyzing the characteristics of discrete dislocations but the analysis is often disturbed by the reaction of interface dislocations. By combining the classical Frank-Bilby theory and atomistic simulations, an atomically informed Frank-Bilby theory proposed in this work can overcome shortcomings in both the classic Frank-Bilby theory and atomistic simulations, and enable quantitative analysis of interface dislocations. The proposed method has been demonstrated via studying two typical dissimilar metallic interfaces. The results showed that Burgers vectors of interface dislocations can be well defined in a Commensurate/Coherent Dichromatic Pattern (CDP) and the Rotation CDP (RCDP) lattices. Most importantly, the CDP and RCDP lattices are not simply a geometric average of the two natural lattices, that is the lattice misfit and the relative twist take the nonequal partition of the misfit strain and the twist angle.

Type
Reviews
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beyerlein, I.J., Mara, N.A., Wang, J., Carpenter, J.S., Zheng, S.J., Han, W.Z., Zhang, R.F., Kang, K., Nizolek, T., and Pollock, T.M.: Structure-property-functionality of bi-metal interfaces. JOM 64(10), 1192 (2012).CrossRefGoogle Scholar
Demkowicz, M.J., Wang, J., and Hoagland, R.G.: Interfaces between dissimilar crystalline solids, in Dislocations in Solids, Vol. 14, Chap. 83, edited by Hirth, J.P. (Elsevier, Amsterdam, 2008); p. 141207.Google Scholar
Vo, N.Q., Averback, R.S., Ashkenazy, Y., Bellon, P., and Wang, J.: Forced chemical mixing at Cu-Nb interfaces under severe plastic deformation. J. Mater. Res. 27(12), 1621 (2012).CrossRefGoogle Scholar
Wang, J. and Misra, A.: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).CrossRefGoogle Scholar
Wang, J., Kang, K., Zhang, R.F., Zheng, S.J., Beyerlein, I.J., and Mara, N.: Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM 64(10), 1208 (2012).CrossRefGoogle Scholar
Hirth, J.P., Pond, R.C., Hoagland, R.G., Liu, X.Y., and Wang, J.: Interface defects, reference spaces and the Frank-Bilby equation. Prog. Mater. Sci. (2012) http://dx.doi.org/10.1016/j.pmatsci.2012.10.002.Google Scholar
Wang, J., Hoagland, R.G., Liu, X.Y., and Misra, A.: The influence of interface shear strength on the glide dislocation-interface interactions. Acta Mater. 59(8), 3164 (2011).CrossRefGoogle Scholar
Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 56, 3109 (2008).CrossRefGoogle Scholar
Wang, J., Misra, A., and Hirth, J.P.: Shear response of Σ3{112} twin boundaries in face centered cubic metals. Phys. Rev. B 83, 064106 (2011).CrossRefGoogle Scholar
Zhang, R.F., Wang, J., Beyerlein, I.J., Misra, A., and Germann, T.C.: Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces. Acta Mater. 60(6–7), 2855 (2012).CrossRefGoogle Scholar
Zheng, S.J., Beyerlein, I.J., Wang, J., Carpenter, J.S., Han, W.Z., and Mara, N.A.: Deformation twinning mechanisms from bi-metal interfaces as revealed by in-situ straining in the TEM. Acta Mater. 60(10), 5858 (2012).CrossRefGoogle Scholar
Han, W.Z., Carpenter, J.S., Wang, J., Beyerlein, I.J., and Mara, N.A.: Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites. Appl. Phys. Lett. 100, 011911 (2012).CrossRefGoogle Scholar
Zhang, R.F., Germann, T.C., Wang, J., Liu, X-Y., and Beyerlein, I.J.: Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: Non-equilibrium molecular dynamics simulations. Scr. Mater. 68(2), 114 (2013).CrossRefGoogle Scholar
Kang, K., Wang, J., Zheng, S.J., and Beyerlein, I.J.: Minimum energy structures faceted, incoherent interfaces. J. Appl. Phys. 112, 073501 (2012).CrossRefGoogle Scholar
Zhang, R.F., Wang, J., Beyerlein, I.J., and Germann, T.C.: Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scr. Mater. 65, 1022 (2011).CrossRefGoogle Scholar
Frank, F.C.: Report of the Symposium on the Plastic Deformation of Crystalline Solids (Carnegie Institute of Technology, Pittsburgh, PA, 1950), p. 150.Google Scholar
Bilby, B.A.: Report of the Conference on Defects in Crystalline Solids (Physical Soc, London; 1955), p. 124.Google Scholar
Bollmann, W.: Crystal Defects and Crystalline Interfaces (Springer-erlag, Berlin, 1970).CrossRefGoogle Scholar
Bollmann, W.: On the geometry of grain and phase boundaries I. General theory. Philos. Mag. 16, 363 (1967).CrossRefGoogle Scholar
Bollmann, W.: On the geometry of grain and phase boundaries II. Applications of general theory. Philos. Mag. 16, 383 (1967).CrossRefGoogle Scholar
Bollmann, W.: On the analysis of dislocation networks. Philos. Mag. 7, 1513 (1962).CrossRefGoogle Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations (Wiley, New York, 1982).Google Scholar
Pond, R.C. and Hirth, J.P., in: Solid State Physics, Seitz, F. and Turnbull, D. eds., Vol. 47; Academic Press, New York, NY, 1994, p. 287.Google Scholar
Sutton, A.P. and Balluffi, R.W.: Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1995).Google Scholar
Nakanishi, N.: New aspects of martensitic transformation. Trans. JIM 17, 211 (1976).Google Scholar
Gleiter, H.: On the structure of grain boundaries in metals. Mater. Sci. Eng. 52, 91 (1982).CrossRefGoogle Scholar
Goodhew, P.J., Darby, T.P., and Balluffi, R.W.: The structure of low angle <110> twist boundaries in gold. Scr. Metall. 10, 495 (1976).CrossRefGoogle Scholar
Kluge-Weiss, P. and Gleiter, H.: Electron microscopic observations on the structure of dislocations in interphase boundaries. Acta Metall. 26, 117 (1978).CrossRefGoogle Scholar
Forwood, C.T. and Clarebrough, L.M.C.: Electron Microscopy of Interfaces in Metals and Alloys (Adam Hilger, Bristol, England, 1991).Google Scholar
Goodhew, P.J.: The relationship between structure and energy in grain boundaries, in ASM Materials Seminor on Grain Boundary Structure and Kinetics, Milwaukee, WI, September 15, 16, 1979, edited by P. Goodhew and R.W. Balluffi (American Society for Metals, Metals Park, OH, 1980), p. 155.Google Scholar
Kang, K., Wang, J., and Beyerlein, I.J.: Atomic structure variations of mechanically stable fcc-bcc interfaces. J. Appl. Phys. 111(5), 053531 (2012).CrossRefGoogle Scholar
Demkowicz, M.J., Hoagland, R.G., and Hirth, J.P.: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).CrossRefGoogle ScholarPubMed
Knowles, K.M.: The dislocation geometry of interphase boundaries. Philos. Mag. A 46, 951 (1982).CrossRefGoogle Scholar
Sauvage, X., Renaud, L., Deconihout, B., Blavette, D., Ping, D.H., and Hono, K.: Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater. 49, 389 (2001).CrossRefGoogle Scholar
Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic modeling of the interaction of glide dislocations with ‘‘weak” interfaces. Acta Mater. 56, 5685 (2008).CrossRefGoogle Scholar
Johnson, R.A. and Oh, D.J.: Analytic embedded atom method model for bcc metals. J. Mater. Res. 4, 1195 (1989).CrossRefGoogle Scholar
Liu, X.Y., Hoagland, R.G., Wang, J., Germann, T. C., and Misra, A.: The influence of dilute heats of mixing on the atomic structures, defect energetics and mechanical properties of fcc–bcc interfaces. Acta Mater. 58, 4549 (2010).CrossRefGoogle Scholar
Demkowicz, M.J. and Hoagland, R.G.: Simulations of collision cascades in Cu-Nb layered composites using an eam interatomic potential. Int. J. Appl. Mech. 1, 421 (2009).CrossRefGoogle Scholar
Wang, J., Hoagland, R.G., and Misra, A.: Phase transition and dislocation nucleation in Cu-Nb layered composites during physical vapor deposition. J. Mater. Res. 23(4), 1009 (2008).CrossRefGoogle Scholar
Wang, J. and Huang, H.C.: Novel deformation mechanism of twinned nanowires. Appl. Phys. Lett. 88, 203112 (2006).CrossRefGoogle Scholar
Wang, J., Huang, H., Kesapragada, S.V., and Gall, D.: Growth of Y-shaped nanorods through physical vapor deposition. Nano Lett. 5(12), 2505 (2005).CrossRefGoogle ScholarPubMed
Ghoniem, N.M., Tong, S., and Sun, Z.L.: Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformations. Phys. Rev. B 61, 913 (2000).CrossRefGoogle Scholar