Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T02:25:44.689Z Has data issue: false hasContentIssue false

Characterization of swift heavy ion irradiation damage in ceria

Published online by Cambridge University Press:  04 March 2015

Clarissa A. Yablinsky*
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Ram Devanathan
Affiliation:
Nuclear Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Janne Pakarinen
Affiliation:
Fuel Materials Group, Institute for Nuclear Research Center (SCK•CEN), B-2400 Mol, Belgium
Jian Gan
Affiliation:
Nuclear Fuels & Materials Division, Idaho National Laboratory, Idaho Falls, Idaho 83415, USA
Daniel Severin
Affiliation:
GSI Helmholtzzentrum, 64291 Darmstadt, Germany
Christina Trautmann
Affiliation:
GSI Helmholtzzentrum, 64291 Darmstadt, Germany; and Technische Universität Darmstadt, 64287 Darmstadt, Germany
Todd R. Allen
Affiliation:
Engineering Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

C.A. Yablinsky and R. Devanathan contributed equally to this work

c)

This work was performed while C.A. Yablinsky and J. Pakarinen were at Engineering Physics Department, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706, USA

Contributing Editor: Joel Ribis

References

REFERENCES

Ronchi, C., Sheindlin, M., Staicu, D., and Kinoshita, M.: Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWdt-1. J. Nucl. Mater. 327, 58 (2004).Google Scholar
Fuketa, T., Sasajima, H., Mori, Y., and Ishijima, K.: Fuel failure and fission gas release in high burnup PWR fuels under RIA conditions. J. Nucl. Mater. 248, 249 (1997).Google Scholar
Rondinella, V.V. and Wiss, T.: The high burn-up structure in nuclear fuel. Mater. Today 13, 24 (2010).CrossRefGoogle Scholar
Ishikawa, N., Sonoda, T., Sawabe, T., Sugai, H., and Sataka, M.: Electronic stopping power dependence of ion-track size in UO2 irradiated with heavy ions in the energy range of ∼1MeV/u. Nucl. Instrum. Methods Phys. Res., Sect. B 314, 180 (2013).Google Scholar
Garrido, F., Moll, S., Sattonnay, G., Thome, L., and Vincent, L.: Radiation tolerance of fluorite-structured oxides subjected to swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1451 (2009).Google Scholar
Yasuda, K., Etoh, M., Sawada, K., Yamamoto, T., Yasunaga, K., Matsumura, S., and Ishikawa, N.: Defect formation and accumulation in CeO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 314, 185 (2013).CrossRefGoogle Scholar
Sonoda, T., Kinoshita, M., Chimi, Y., Ishikawa, N., Sataka, M., and Iwase, A.: Electronic excitation effects in CeO2 under irradiations with high-energy ions of typical fission products. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 254 (2006).Google Scholar
Weber, W.J.: Alpha-irradiation damage in CeO2, UO2, and PuO2 . Radiat. Eff. Defects Solids 83, 145 (1984).Google Scholar
Lang, M., Zhang, F., Zhang, J., Ewing, R.C., Tracy, C.L., Cusick, A.B., VonEhr, J., Chen, Z., and Trautmann, C.: Swift heavy ion-induced phase transformation in Gd2O3 . Nucl. Instrum. Methods Phys. Res., Sect. B 326, 121 (2014).Google Scholar
Hemon, S., Chailley, V., Dooryhee, E., Dufour, C., Gourbilleau, F., Levesque, F., and Paumier, E.: Phase transformation of polycrystalline Y2O3 under irradiation with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 563 (1997).Google Scholar
Benyagoub, A., Couvreur, F., Bouffard, S., Levesque, F., Dufour, C., and Paumier, E.: Phase transformation induced in pure zirconia by high energy heavy ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 175, 417 (2001).Google Scholar
Toulemonde, M., Trautmann, C., Balanzat, E., Hjort, K., and Weidinger, A.: Track formation and fabrication of nanostructures with MeV-ion beams. Nucl. Instrum. Methods Phys. Res., Sect. B 216, 1 (2004).CrossRefGoogle Scholar
Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Studer, F., and Trautmann, C.: Experimental Phenomena and Thermal Spike Model Description of Ion Tracks in Amorphisable Inorganic Insulators. In Ion Beam Science: Solved and Unsolved Problems—Part I, Sigmund, P. ed.; The Royal Danish Academy of sciences and Letters: Copenhagen, 2006; p. 263. Mat.-Fys. Medd. Vol. 52.Google Scholar
Trautmann, C.: Micro- and Nanoengineering with Ion Tracks. In Ion Beams in Nanoscience and Technology, Hellborg, R., Whitlow, H.J., and Zhang, Y. eds.; SpringerLink and C. Ebooks, Springer-Verlag: Berlin, Heidelberg, 2010; p. 215. Topics Appl. Physics 110.Google Scholar
Schwartz, K., Trautmann, C., and Neumann, R.: Electronic excitations and heavy-ion-induced processes in ionic crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 209, 73 (2003).Google Scholar
Zhang, J.M., Lang, M., Ewing, R.C., Devanathan, R., Weber, W.J., and Toulemonde, M.: Nanoscale phase transitions under extreme conditions within an ion track. J. Mater. Res. 25, 1344 (2010).Google Scholar
Lang, M., Devanathan, R., Toulemonde, M., and Trautmann, C.: Advances in understanding of swift heavy-ion tracks in complex ceramics. Curr. Opin. Solid State Mater. Sci. 19(1), 39 (2014).Google Scholar
Wang, J., Lang, M., Ewing, R.C., and Becker, U.: Multi-scale simulation of structural heterogeneity of swift-heavy ion tracks in complex oxides. J. Phys.: Condens. Matter 25, 135001 (2013).Google Scholar
Bacon, D.J. and Diaz de la Rubia, T.: Molecular dynamics computer simulations of displacement cascades in metals. J. Nucl. Mater. 216, 275 (1994).Google Scholar
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A., and Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).Google Scholar
Sonoda, T., Kinoshita, M., Ishikawa, N., Sataka, M., Chimi, Y., Okubo, N., Iwase, A., and Yasunaga, K.: Clarification of the properties and accumulation effects of ion tracks in CeO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2882 (2008).Google Scholar
Takaki, S., Yasuda, K., Yamamoto, T., Matsumura, S., and Ishikawa, N.: Atomic structure of ion tracks in ceria. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 140 (2014).Google Scholar
Tracy, C.L., McLain Pray, J., Lang, M., Popov, D., Park, C., Trautmann, C., and Ewing, R.C.: Defect accumulation in ThO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 169 (2014).CrossRefGoogle Scholar
Kluth, P., Schnohr, C.S., Sprouster, O.H., Giulian, F., Ridgway, D.J., Pakarinen, R., Djurabekova, M.C., Nordlund, A.P., Byrne, C., Trautmann, D.J., Cookson, K., and Toulemonde, M.: Fine structure in swift heavy ion tracks in amorphous SiO2 . Phys. Rev. Lett. 101, 175503 (2008).Google Scholar
Pakarinen, O.H., Djurabekova, F., Nordlund, K., Kluth, P., and Ridgway, M.C.: Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1456 (2009).Google Scholar
Ziegler, J.F.: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S., and Garner, F.A.: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).CrossRefGoogle Scholar
Yasunaga, K., Yasuda, K., Matsumura, S., and Sonoda, T.: Electron energy-dependent formation of dislocation loops in CeO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2877 (2008).CrossRefGoogle Scholar
Rasband, W.S.: Image J (National Institutes of Health, Maryland, 1997–2014).Google Scholar
Todorov, I.T., Allan, N.L., Purton, J.A., Dove, M.T., and Smith, W.: Use of massively parallel molecular dynamics simulations for radiation damage in pyrochlores. J. Mater. Sci. 42, 1920 (2007).Google Scholar
Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33 (1996).CrossRefGoogle ScholarPubMed
Sayle, T.X.T., Parker, S.C., and Sayle, D.C.: Oxygen transport in unreduced, reduced and Rh(III)-doped CeO2 nanocrystals. Faraday Discuss. 134, 377 (2007).Google Scholar
Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
Devanathan, R., Gao, F., and Sundgren, C.J.: Role of cation choice in the radiation tolerance of pyrochlores. RSC Adv. 3, 2901 (2013).Google Scholar
Kumar, A., Devanathan, R., Shutthanandan, V., Kuchibhata, S., Karakoti, A.S., Yong, Y., Thevuthasan, S., and Seal, S.: Radiation-induced reduction of ceria in single and polycrystalline thin films. J. Phys. Chem. C 116, 361 (2012).Google Scholar
Ishikawa, N., Ohhara, K., Ohta, Y., and Michikami, O.: Binomial distribution function for intuitive understanding of fluence dependence of non-amorphized ion track area. Nucl. Instrum. Methods Phys. Res., Sect. B 286, 3273 (2010).Google Scholar
Zelaya, E., Tolley, A., Condo, A.M., and Schumacher, G.: Swift heavy ion irradiations of Cu-Zn-al and Cu-al-Ni alloys. J. Phys.: Condens. Matter 21, 185009 (2009).Google Scholar
Garvie, L.A.J. and Buseck, P.R.: Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J. Phys. Chem. Solids 60, 1943 (1999).Google Scholar
Nordlund, K., Ghaly, M., Averback, R.S., Caturla, M., and de la Rubia, T.D., and Tarus, J.: Defect production in collision cascades in elemental semiconductors and fcc metals. Phys. Rev. B: Condens. Matter 57, 7556 (1998).Google Scholar
Sasajima, Y., Ajima, N., Osada, T., Ishikawa, N., and Iwase, A.: Molecular dynamics simulation of fast particle irradiation on the single crystal CeO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 314, 202 (2013).Google Scholar
Iwase, A., Ohno, H., Ishikawa, N., Baba, Y., Hirao, N., Sonoda, T., and Kinoshita, M.: Study on the behavior of oxygen atoms in swift heavy ion irradiated CeO2 by means of synchrotron radiation X-ray photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 969 (2009).Google Scholar
Ohno, H., Iwase, A., Matsumura, D., Nishihata, Y., Mizuki, J., Ishikawa, N., Baba, Y., Hirao, N., Sonoda, T., and Kinoshita, M.: Study on effects of swift heavy ion irradiation in cerium dioxide using synchrotron radiation X-ray absorption spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3013 (2008).CrossRefGoogle Scholar
Chen, W-Y., Wen, J., Kirk, M.A., Miao, Y., Ye, B., Kleinfeldt, B.R., Oaks, A.J., and Stubbins, J.F.: Characterization of dislocation loops in CeO2 irradiated with high energy krypton and xenon. Philos. Mag. 93, 4569 (2013).Google Scholar
Szenes, G., Fink, D., Klaumunzer, S., Paszti, F., and Peter, A.: Ion-induced tracks in Bi4Ge3O12 and Bi12GeO20 crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 245, 243 (2006).Google Scholar