Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:09:55.509Z Has data issue: false hasContentIssue false

Characterization of superconducting SmBa2Cu3O7 films grown by pulsed laser deposition

Published online by Cambridge University Press:  31 January 2011

Q. X. Jia
Affiliation:
Superconductivity Technology Center, Mail Stop K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S. R. Foltyn
Affiliation:
Superconductivity Technology Center, Mail Stop K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. Y. Coulter
Affiliation:
Superconductivity Technology Center, Mail Stop K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. F. Smith
Affiliation:
Superconductivity Technology Center, Mail Stop K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. P. Maley
Affiliation:
Superconductivity Technology Center, Mail Stop K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

We have investigated epitaxial superconducting SmBa2Cu3O7 (Sm123) films grown by pulsed-laser deposition on single-crystal SrTiO3 substrates. The deposition temperature plays an important role in determining the superconducting properties of Sm123 films. The superconducting transition temperature increases with the deposition temperature whereas the transition width decreases at deposition temperatures in the range of 700–875 °C. A Sm123 film deposited at 850 °C exhibits a transition temperature above 93 K with a transition width less than 0.5 K. Even though Sm123 films exhibit a higher transition temperature than Yba2Cu3O7 (Y123), the Sm123 shows lower critical current density at liquid-nitrogen temperature. The nominal critical current density of Sm123 film is less than 1 MA/cm2 at 75.4 K. Nevertheless, the Sm123 films have less anisotropy and stronger pinning characteristics compared to Y123. They are also much smoother with fewer particulates, as revealed by scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
2.Wu, X.D., Foltyn, S.R., Arendt, P.N., Blumenthal, W.R., Campbell, I.H., Cotton, J.D., Coulter, J.Y., Hults, W.L., Maley, M.P., Safar, H.F., and Smith, J.L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
3.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Koreger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hatfield, E., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
4.Peng, L.S.J., Wang, W., Jo, W., Ohnishi, T., Marshall, A.F., Hammond, R.H., Beasley, M.R., Peterson, E.J., and Ericson, R.E., IEEE Trans. Appl. Supercond. 11, 3375 (2001).CrossRefGoogle Scholar
5.Selvamanickam, V., Galinski, G., DeFrank, J., Trautwein, C., Haldar, P., Balachandran, U., and Chudzik, M., IEEE Trans. Appl. Supercond. 9, 1523 (1999).CrossRefGoogle Scholar
6.Gupta, A., Jagannathan, R., Cooper, E.I., Giess, E.A., Landman, J.I., and Hussey, B.W., Appl. Phys. Lett. 52, 2077 (1988).CrossRefGoogle Scholar
7.Izumi, T., Hobara, N., Kakimoto, K., Izumi, T., Hasegawa, K., Kai, M., Honjo, T., Yao, X., Fuji, H., Nakamura, Y., and Shiohara, Y., IEEE Trans. Appl. Supercond. 11, 2917 (2001).CrossRefGoogle Scholar
8.Foltyn, S.R., Arendt, P.N., DePaula, R.F., Dowden, P.C., Coulter, J.Y., Groves, J.R., Haussamen, L.N., Winston, L.P., Jia, Q.X., and Maley, M.P., Physica C 341, 2305 (2000).CrossRefGoogle Scholar
9.Foltyn, S.R., Jia, Q.X., Arendt, P.N., Kinder, L.R., Fan, Y., and Smith, J.F., Appl. Phys. Lett. 75, 3692 (1999).CrossRefGoogle Scholar
10.Appelboom, H.M., Matijasevic, V.C., Mathu, F., Rietveld, G., Anczykowski, B., Peterse, W., Tuinstra, F., Mooij, J.E., Sloof, W.G., Rijken, H.A., Klein, S.S., and Vanijzendoorn, L.J., Physica C 214, 323 (1993).CrossRefGoogle Scholar
11.Schindler, W., Vanhasselt, P., Tontsch, P., Markl, J., Burger, J., Bauer, P., and Saemannischenko, G., J. Cryst. Growth 127, 1088 (1993).CrossRefGoogle Scholar
12.Staublepumpin, B., Matijasevic, V.C., Ilge, B., Mooij, J.E., Peterse, W., Scholte, P., Tuinstra, F., Venvik, H.J., Wai, D.S., Traeholt, C., Wen, J.G., and Zandbergen, H.W., Phys. Rev. B 52, 7604 (1995).CrossRefGoogle Scholar
13.Jiang, Q.D., Smilgies, D.M., Feidenhansl, R., Cardona, M., and Zegenhagen, J., Solid State Commun. 98, 157 (1996).CrossRefGoogle Scholar
14.DiTrolio, A., Morone, A., Orlando, S., Gambardella, U., Pace, S., IEEE Trans. Appl. Supercond. 9, 1583 (1999).CrossRefGoogle Scholar
15.Azaroff, L.V., Elements of x-ray crystallography (McGraw-Hill, Inc., New York, 1968).Google Scholar
16.Safar, H., Coulter, J.Y., Maley, M.P., Foltyn, S., Arendt, P., Wu, X.D., and Willis, J.O., Phys. Rev. B 52, R9875 (1995).CrossRefGoogle Scholar
17.Haage, T., Zegenhagen, J., Li, J.Q., Habermeier, H.U., Cardona, M., Jooss, Ch., Warthmann, R., Forkl, A., and Kronmuller, H., Phys. Rev. B 56, 8404 (1998).CrossRefGoogle Scholar
18.Chang, C.C., Wu, X.D., Ramesh, R., Xi, X.X., Ravi, T.S., Venkatesan, T., Hwang, D.M., Muenchausen, R.E., Foltyn, S., and Nogar, N.S., Appl. Phys. Lett. 57, 1814 (1990).CrossRefGoogle Scholar
19.Jia, Q.X., Foltyn, S.R., Arendt, P.N., and Smith, J.F., Appl. Phys. Lett. 80, 1601 (2002).CrossRefGoogle Scholar
20.Kwon, C., Kinder, L.R., Fan, Y., Gim, Y., Findikoglu, A.T., Bingert, J.F., Coulter, J.Y., Foltyn, S. R., Peterson, D.E., and Jia, Q.X., Philos. Mag. B 80, 45 (2000).CrossRefGoogle Scholar