Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T01:13:21.188Z Has data issue: false hasContentIssue false

Characterization of structure and properties of polymer films made from blends of polyethylene with poly(4-methyl-1-pentene)

Published online by Cambridge University Press:  22 December 2016

Katarzyna Merkel*
Affiliation:
Department of Material Engineering, Central Mining Institute, Katowice 40-166, Poland
Joanna Lenża
Affiliation:
Department of Material Engineering, Central Mining Institute, Katowice 40-166, Poland
Henryk Rydarowski
Affiliation:
Department of Material Engineering, Central Mining Institute, Katowice 40-166, Poland
Andrzej Pawlak
Affiliation:
Polish Academy of Science, Department of Polymer Physics, Centre of Molecular and Macromecular Studies, Łódź 90-363, Poland
Roman Wrzalik
Affiliation:
Biophysics and Molecular Physics Department, University of Silesia, Chorzów 41-500, Poland
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The main aim of this research was investigation of the processing-structure-property relationship for polymer blends. The paper presents the results of tests on the structure, basic physical and porous properties of polymer films blend of low density polyethylene (LDPE) with poly(4-methyl-1-pentene) (PMP). Studies utilizing LDPE/PMP blends were undertaken to investigate a three-stage process: melt-extrusion/annealing/uniaxial-stretching (MEAUS), and a two-stage process: melt-extrusion/uniaxial and biaxial stretching (MEUS and MEUBS), used to produce porous films. The permeability and porosity results coupled with small-angle x-ray scattering data provide a direct connection between changes in microstructure to the observed changes in gas transport properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lee, J.K., Kim, J.S., Lim, H.J., Lee, H.K., Jo, S.M., and Ougizawa, T.: Microphase separation and crystallization in mixtures of polystyrene–poly(methyl methacrylate) diblock copolymer and poly(vinylidene fluoride). Polymer 47, 5420 (2006).Google Scholar
Li, X.G., Huang, M.R., Hu, L., Lin, G., and Yang, P.C.: Cellulose derivative and liquid crystal blend membranes for oxygen enrichment. Eur. Polym. J. 1(35), 157 (1999).CrossRefGoogle Scholar
Li, X-G., Kresse, I., Springer, J., Nissen, J., and Yang, Y-L.: Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethyl cellulose. Polymer 42, 6859 (2001).CrossRefGoogle Scholar
Kapantaidakis, G.C., Koops, G.H., Wessling, M., Kaldis, S.P., and Sakellaropoulos, G.P.: CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE J. 49(7), 1702 (2003).Google Scholar
Drzal, P.L., Halasa, A.F., and Kofinas, P.: Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes. Polymer 41, 4671 (2000).Google Scholar
Lima, M.F.S., Vasconcellos, M.A.Z., and Samios, D.: Crystallinity changes in plastically deformed isotactic polypropylene evaluated by x-ray diffraction and differential scanning calorimetry methods. J. Polym. Sci., Part B: Polym. Phys. 40, 896 (2002).Google Scholar
Mandelkern, L.: The relation between structure and properties of crystalline polymers. Polym. J. 17(1), 337 (1985).Google Scholar
Piorkowska, E.: Modeling of polymer crystallization in a temperature gradient. J. Appl. Polym. Sci. 86, 1351 (2002).Google Scholar
Machado, G., Denardin, E.L.G., Kinast, E.J., Goncalves, M.C., de Luca, M.A., Teixeira, S.R., and Samios, D.: Crystalline properties and morphological changes in plastically deformed isotactic polypropylene evaluated by x-ray diffraction and transmission electron microscopy. Eur. Polym. J. 41, 129 (2005).Google Scholar
Bartczak, Z.: Deformation of high-density polyethylene produced by rolling with side constraints. I. Orientation behavior. J. Appl. Polym. Sci. 86, 1396 (2002).CrossRefGoogle Scholar
Pawlak, A.: Plastic deformation and cavitation in semicrystalline polymers studied by x-ray methods. Polimery 59, 7 (2014).Google Scholar
Lin, L. and Argon, A.S.: Structure and plastic-deformation of polyethylene. J. Mater. Sci. 29, 294 (1994).Google Scholar
Sprague, B.S.: Relationship of structure and morphology to properties of “hard” elastic fibers and films. J. Macromol. Sci., Part B: Phys. 8(1), 157 (1973).Google Scholar
Suzuki, T., Tanaka, T., Nakajima, M., Yoshimizu, H., and Tsujita, Y.: Characterization of the cavity in poly(4-methyl-1-pentene) crystal by gas permeation and 129Xe NMR measurements. Polym. J. 34(12), 891 (2002).Google Scholar
Pawlak, A. and Galeski, A.: Cavitation and morphological changes in polypropylene deformed at elevated temperatures. J. Polym. Sci., Part B: Polym. Phys. 48, 1271 (2010).CrossRefGoogle Scholar
Pawlak, A.: Cavitation during tensile deformation of isothermally crystallized polypropylene and high-density polyethylene. Colloid Polym. Sci. 291, 773 (2013).Google Scholar
Pawlak, A., Galeski, A., and Rozanski, A.: Cavitation during deformation of semicrystalline polymers. Prog. Polym. Sci. 39, 921 (2014).CrossRefGoogle Scholar
Farge, L., Andre, S., Pawlak, A., Baravian, C., Irvine, S.C., and Philippe, A-M.: A study of the deformation-induced whitening phenomenon for cavitating and non-cavitating semicrystalline polymers. J. Polym. Sci., Part B: Polym. Phys. 51, 826 (2013).Google Scholar
Chen, R., Lu, Y., Zhao, J., Jiang, Z., and Men, Y.: Two-step cavitation in semi-crystalline polymer during stretching at temperature below glass transition. J. Polym. Sci., Part B: Polym. Phys. 54, 2007 (2016).Google Scholar
Lin, L. and Argon, A.S.: Rate mechanism of plasticity in the crystalline component of semicrystalline nylon-6. Macromolecules 27, 6903 (1994).Google Scholar
Chan, A.S. and Farrokh, B.: Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings. Part I. Experimental results over wide ranges of temperatures and strain rates. Int. J. Plast. 22, 1506 (2006).Google Scholar
Tsai, F.J. and Torkelson, J.M.: Microporous poly(methyl methacrylate) membranes: Effect of a low-viscosity solvent on the formation mechanism. Macromolecules 23, 4983 (1990).Google Scholar
Lee, S-Y., Park, S-Y., and Song, H-S.: Lamellar crystalline structure of hard elastic HDPE films and its influence on microporous membrane formation. Polymer 47, 3540 (2006).Google Scholar
Yu, T-H. and Wilkes, G.L.: Orientation determination and morphological study of high density polyethylene (HDPE) extruded tubular films: Effect of processing variables and molecular weight distribution. Polymer 37(21), 4675 (1996).CrossRefGoogle Scholar
Zhou, H. and Wilkes, G.L.: Comparison of lamellar thickness and its distribution determined from DSC, SAXS, TEM and AFM for high-density polyethylene films having a stacked lamellar morphology. Polymer 38(23), 5735 (1997).Google Scholar
Dmitriev, I., Bukošek, V., Lavrentyev, V., and Elyashevich, G.: Structure and deformational behavior of poly(vinylidene fluoride) hard elastic films. Acta Chim. Slov. 54, 784 (2007).Google Scholar
Xu, J., Johnson, M., and Wilkes, G.L.: A tubular film extrusion of poly(vinylidene fluoride): Structure/process/property behavior as a function of molecular weight. Polymer 45, 5327 (2004).Google Scholar
Mizutani, Y., Nakamura, S., Kanako, S., and Okamura, K.: Microporous polypropylene sheets. Ind. Eng. Chem. Res. 32, 221 (1993).Google Scholar
Chau, C.C. and Im, J-H.: Process of making a porous membrane. U.S. Patent 4,874,568, 1989. Google Scholar
Lopatin, G., Yen, L.Y., and Rogers, R.R.: Microporous membrane from polypropylene. U.S. Patent 4,874,567, 1989. Google Scholar
Soehngen, J.W. and Ostrander, K.: Solvent stretch process for preparing a microporous film. U.S. Patent 4,257,997, 1981. Google Scholar
Lee, J., Macosko, C.W., and Bates, F.S.: Development of discrete nanopores. I: Tension of polypropylene/polyethylene copolymer blends. J. Appl. Polym. Sci. 91, 3642 (2004).Google Scholar
Nago, S. and Mizutami, Y.: Microporous polypropylene sheets containing CaCO3 filler: Effects of stretching ratio and removing CaCO3 filer. J. Appl. Polym. Sci. 68, 1543 (1998).Google Scholar
Michler, G.H. and von Schmeling, H-H.K-B.: The physics and micro-mechanics of nano-voids and nano-particles in polymer combinations. Polymer 54, 3131 (2013).Google Scholar
Johnson, M.B. and Wilkes, G.L.: Microporous membranes of isotactic poly(4-methyl-1-pentene) from a melt-extrusion process. I. Effects of resin variables and extrusion conditions. J. Appl. Polym. Sci. 83, 2095 (2002).Google Scholar
Johnson, M.B. and Wilkes, G.L.: Microporous membranes of isotactic poly(4-methyl-1pentene) from a melt-extrusion process. II. Effects of thermal annealing and stretching on porosity. J. Appl. Polym. Sci. 84, 1076 (2002).CrossRefGoogle Scholar
Mohr, J.M. and Paul, D.R.: Effect of casting solvent on the permeability of poly(4-methyl-1-pentene). Polymer 32, 1236 (1991).Google Scholar
Wang, Y., Jiang, Z., Fu, L., Lu, Y., and Men, Y.: Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers. PLoS One 9(5), e97234 (2014).Google Scholar
Menczel, J.D. and Prime, R.B.: Thermal Analysis of Polymers: Fundamentals and Applications (John Wiley & Sons, New York, 2009); p. 98.Google Scholar
Al-Rawajfeha, A.E., Al-Salahb, H.A., and Al-Rhaelc, I.: Miscibility, crystallinity and morphology of polymer blends of polyamide-6/poly(β-hydroxybutyrate). Jordan J. Chem. 1(2), 155 (2006).Google Scholar
Charlet, G. and Delmas, G.: Heat of fusion of poly(4-methylpentene-1). J. Polym. Sci., Part B: Polym. Phys. 26, 1111 (1988).Google Scholar
Kim, H., Kobayashi, S., Rahim, M.A., Zhang, M.L.J., Khusainova, A., Hillmyer, M.A., Abdala, A.A., and Macosko, C.W.: Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer 52, 1837 (2011).Google Scholar
Glatter, O. and Kratky, O.: Small Angle X-ray Scattering (Academic Press, London, 1982); pp. 56.Google Scholar
Koenig, J.L.: Spectroscopy of Polymers (Elsevier, New York, 1999); p. 179.Google Scholar
Sung, C.S.P.: A modified technique for measurement of orientation from polymer surfaces by attenuated total reflection infrared dichroism. Macromolecules 14, 591 (1981).Google Scholar
Lefebvre, D., Jasse, B., and Monnerie, L.: Fourier transform infra-red study of uniaxially oriented poly(2,6-dimethyl 1,4-phenyl oxide)-atactic polystyrene blends. Polymer 22, 1616 (1981).CrossRefGoogle Scholar
Kocot, A., Vij, J.K., and Wrzalik, R.: Study of IR dichroism and the order parameter in liquid crystalline polymer using infrared spectroscopy. Mol. Mater. 1, 273 (1992).Google Scholar
Vij, J.K., Kocot, A., Kruk, G., Wrzalik, R., and Zentel, R.: Infrared dichroism and vibrational spectroscopy of side chain polyacrylate liquid crystalline polymer. Mol. Cryst. Liq. Cryst. 237, 337 (1993).Google Scholar
Pouchert, C.J.: The Aldrich Libary of FT-IR Spectra (Aldrich, Milwaukee, 1989).Google Scholar
Zerbi, G., Piseri, L., and Cabassi, F.: Vibrational spectrum of chain molecules with conformational disorder: Polyethylene. Mol. Phys. 22, 241 (1971).Google Scholar
Samuela, E.J.J. and Mohan, S.: FTIR and FT Raman spectra and analysis of poly(4-methyl-1-pentene). Spectrochim. Acta, Part A 60, 19 (2004).Google Scholar