Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T08:51:25.970Z Has data issue: false hasContentIssue false

Characterization of spray-pyrolized superconducting YBaCuO thin films on single-crystal MgO by transmission electron microscopy

Published online by Cambridge University Press:  31 January 2011

S. J. Golden
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
H. Isotalo
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
M. Lanham
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
J. Mayer
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
M. Rüble
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
Get access

Abstract

Superconducting YBaCuO thin films have been fabricated on single-crystal MgO by the spray-pyrolysis of nitrate precursors. The effects on the superconductive behavior of processing parameters such as time and temperature of heat treatment and film thickness were investigated. The superconductive behavior was found to be strongly dependent on film thickness. Films of thickness 1 μm were found to have a Tc of 67 K while thinner films showed appreciably degraded properties. Transmission electron microscopy studies have shown that the heat treatments necessary for the formation of the superconductive phase (for example, 950 °C for 30 min) also cause a substantial degree of film-substrate interdiffusion. Diffusion distances for Cu in the MgO substrate and Mg in the film were found to be sufficient to explain the degradation of the superconductive behavior in films of thickness 0.5 μm and 0.2 μm. From the concentration profiles obtained by EDS analysis diffusion coefficients at 950 °C for Mg into the YBaCuO thin film and for Cu into the MgO substrate were evaluated as 3 × 10−19 m2/s and 1 × 10−17 m2/s, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Gupta, A., Koren, G., Giess, E. A., Moore, N. R., O'Sullivan, E. J. M., and Cooper, E. I., Appl. Phys. Lett. 52, 163 (1988).CrossRefGoogle Scholar
2Saxena, A. K., Ayra, S. P. S., Das, B., Ellis, A. B., Holmes, D. S., and Singh, A. K., Solid State Commun. 106, 163 (1988).Google Scholar
3Kawai, M., Kawai, T., Masuhira, H., and Takahasi, M., Jpn. J. Appl. Phys. 28, L1740 (1988).Google Scholar
4Cooper, E. I., Giess, E. A., and Gupta, A., Mater. Lett. 7, 5 (1988).CrossRefGoogle Scholar
5Vaslow, D. F., Dieckmann, G. H., Eli, D. D., Ellis, A. B., Holmes, D. S., Lefkow, A., Macgregor, M., Norman, J. E., Petras, M. F., and Yang, Y., Appl. Phys. Lett. 53, 324 (1988).CrossRefGoogle Scholar
6Nonaka, T., Kaneko, K., Hasegawa, T., Kisho, K., Takahashi, Y., Koboyashi, K., Kitazawa, K., and Fueki, K., Jpn. J. Appl. Phys. 27, L867 (1988).CrossRefGoogle Scholar
7Rice, C. E., van Dover, R. B., and Fisanick, G. J., American Inst., of Phys. Conference Proc. No. 165: Thin film processing and characterization of high-temperature superconductors, New York, 198 (1988).Google Scholar
8Cuomo, J. J., Chisholm, M. F., Yee, D. S., Mikalsen, D. J., Madakson, P. B., Roy, R. A., Giess, E., and Scilla, G., American Inst. of Phys. Conference Proc. No. 165: Thin film processing and characterization of high-temperature superconductors, New York, 141 (1988).Google Scholar
9Rice, C. E., van Dover, R. B., and Fisanick, G. J., Appl. Phys. Lett. 51, 1842 (1987).CrossRefGoogle Scholar
10Chu, J. J., Liu, R. S., Kung, J. H., Wu, P. T., and Chen, L. J., J. Appl. Phys. 64, 2523 (1988).CrossRefGoogle Scholar
11Cheung, C. T. and Ruckenstein, E., J. Mater. Res. 4, 1 (1989).CrossRefGoogle Scholar
12Madakson, P., Cuomo, J. J., Yee, D. S., Roy, R. A., and Scilla, G., J. Appl. Phys. 63, 2046 (1988).CrossRefGoogle Scholar
13Nakajima, H., Yamaguchi, S., Iwasaki, K., Morita, H., and Fujimori, H., Appl. Phys. Lett. 53, 1437 (1988).CrossRefGoogle Scholar
14Mayer, J., Lanham, M., and Rühle, M. (to be published).Google Scholar
15Borg, R. J. and Dienes, G. I., An Introduction to Solid State Diffusion (Academic Press Inc., Boston, MA), 1988.Google Scholar
16Kwestroo, W., van Hal, H. A. M., and Langereis, C., Mater. Res. Bull. 9, 1631 (1974).CrossRefGoogle Scholar
17Wuensch, B. J. and Vasilos, T., J. Chem. Phys. 36, 2917 (1962)CrossRefGoogle Scholar
18Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. Sec. B 25, 925 (1969).CrossRefGoogle Scholar