Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:11:25.192Z Has data issue: false hasContentIssue false

Characterization of microstructure and property evolution in advanced cladding and duct: Materials exposed to high dose and elevated temperature

Published online by Cambridge University Press:  20 May 2015

Todd R. Allen
Affiliation:
Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
Djamel Kaoumi*
Affiliation:
Mechanical Engineering, The University of South Carolina, Columbia, South Carolina 29208, USA
Janelle P. Wharry
Affiliation:
Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
Zhijie Jiao
Affiliation:
Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Cem Topbasi
Affiliation:
Mechanical and Nuclear Engineering, Penn State University, University Park, Pennsylvania 16802, USA
Aaron Kohnert
Affiliation:
Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Leland Barnard
Affiliation:
Materials Science & Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
Alicia Certain
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Kevin G. Field
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6136, USA
Gary S. Was
Affiliation:
Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Dane L. Morgan
Affiliation:
Materials Science & Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
Arthur T. Motta
Affiliation:
Mechanical and Nuclear Engineering, Penn State University, University Park, Pennsylvania 16802, USA
Brian D. Wirth
Affiliation:
Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Y. Yang
Affiliation:
Nuclear Engineering, University of Florida, Gainesville, Florida 32611, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Designing materials for performance in high-radiation fields can be accelerated through a carefully chosen combination of advanced multiscale modeling paired with appropriate experimental validation. The studies reported in this work, the combined efforts of six universities working together as the Consortium on Cladding and Structural Materials, use that approach to focus on improving the scientific basis for the response of ferritic–martensitic steels to irradiation. A combination of modern modeling techniques with controlled experimentation has specifically focused on improving the understanding of radiation-induced segregation, precipitate formation and growth under radiation, the stability of oxide nanoclusters, and the development of dislocation networks under radiation. Experimental studies use both model and commercial alloys, irradiated with both ion beams and neutrons. Transmission electron microscopy and atom probe are combined with both first-principles and rate theory approaches to advance the understanding of ferritic–martensitic steels.

Type
Reviews
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Contributing Editor: Joel Ribis

b)

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

References

REFERENCES

Kessler, G.: Requirements for nuclear energy in the 21st century nuclear energy as a sustainable energy source. Prog. Nucl. Energy 40, 309 (2002).CrossRefGoogle Scholar
Stanculescu, A.: IAEA activities in the area of partitioning and transmutation. Nucl. Instrum. Methods Phys. Res., Sect. A 562, 614 (2006).CrossRefGoogle Scholar
Broeders, C.H.M., Kiefhaber, E., and Wiese, H.W.: Burning transuranium isotopes in thermal and fast reactors. Nucl. Eng. Des. 202, 157 (2000).CrossRefGoogle Scholar
Bianchi, F., Calabrese, R., Glinatsis, G., Lantieri, A., Monti, S., and Vettraino, F.: Regional and world level scenarios for sodium fast reactor deployment. Nucl. Eng. Des. 241, 1145 (2011).CrossRefGoogle Scholar
Lennox, T.A., Millington, D.N., and Sunderland, R.E.: Plutonium management and Generation IV systems. Prog. Nucl. Energy 49, 589 (2007).CrossRefGoogle Scholar
Marques, J.G.: Evolution of nuclear fission reactors: Third generation and beyond. Energy Convers. Manage. 51, 1774 (2010).CrossRefGoogle Scholar
Salvatores, M.: Transmutation: Issues, innovative options and perspectives. Prog. Nucl. Energy 40, 375 (2002).CrossRefGoogle Scholar
Bloom, E.E., Busby, J.T., Duty, C.E., Maziasz, P.J., McGreevy, T.E., Nelson, B.E., Pint, B.A., Tortorelli, P.F., and Zinkle, S.J.: Critical questions in materials science and engineering for successful development of fusion power. J. Nucl. Mater. 367370, 1 (2007).CrossRefGoogle Scholar
Baluc, N., Abe, K., Boutard, J.L., Chernov, V.M., Diegele, E., Jitsukawa, S., Kimura, A., Klueh, R.L., Kohyama, A., Kurtz, R.J., Lasser, R., Matsui, H., Moslang, A., Muroga, T., Odette, G.R., Tran, M.Q., van der Schaaf, B., Wu, Y., and Zinkle, S.J.: Status of R&D activities on materials for fusion power reactors. Nucl. Fusion 47, 696 (2007).CrossRefGoogle Scholar
Gelles, D.S.: Development of martensitic steels for high neutron damage applications. J. Nucl. Mater. 239, 99 (1996).CrossRefGoogle Scholar
Allen, T., Busby, J., Meyer, M., and Petti, D.: Materials challenges for nuclear systems. Mater. Today 13, 14 (2010).CrossRefGoogle Scholar
Zinkle, S.J. and Busby, J.T.: Structural materials for fission and fusion energy. Mater. Today 12, 12 (2009).CrossRefGoogle Scholar
Grime, R.W., Koning, R.J.M., and Edwards, L.: Greater tolerance for nuclear materials. Nat. Mater. 7, 683 (2008).CrossRefGoogle Scholar
Yvon, P. and Carré, F.: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217 (2009).CrossRefGoogle Scholar
Allen, T.R., Busb, J.T., Klueh, R.L., Maloy, S.A., and Toloczko, M.B.: Cladding and duct materials for advanced nuclear recycle reactors. J. Mater. 60, 15 (2008).Google Scholar
Allen, T., Burlet, H., Nanstad, R.K., Samaras, M., and Ukai, S.: Advanced structural materials and cladding. MRS Bull. 34, 20 (2009).CrossRefGoogle Scholar
Klueh, R.L. and Harries, D.R.: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (ASTM, West Conshohocken, PA, 2001).CrossRefGoogle Scholar
Odette, G.R., Alinger, M.J., and Wirth, B.D.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).CrossRefGoogle Scholar
Garner, F.A.: Radiation damage in austenitic steels. In Comprehensive Nuclear Materials, Konings, R.J.M. ed.; Elsevier: Oxford, 2012; pp. 3395.CrossRefGoogle Scholar
Zinkle, S.J. and Ghoniem, N.M.: Prospects for accelerated development of high performance structural materials. J. Nucl. Mater. 417, 2 (2011).CrossRefGoogle Scholar
Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, New York, 2007).Google Scholar
Wiedersich, H., Okamoto, P.R., and Lam, N.Q.: Theory of radiation-induced segregation in concentrated alloys. J. Nucl. Mater. 83, 98 (1979).CrossRefGoogle Scholar
Was, G.S., Wharry, J.P., Frisbie, B., Wirth, B.D., Morgan, D., Tucker, J.D., and Allen, T.R.: Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys. J. Nucl. Mater. 411, 41 (2011).CrossRefGoogle Scholar
Ardell, A.J.: Radiation-induced solute segregation in alloys. In Materials Issues for Generation IV Systems. (Springer, Dordrecht, Netherlands, 2008); pp. 285310.CrossRefGoogle Scholar
Hanninen, H. and Aho-Mantila, I.: Environment-sensitive cracking of reactor internals. In Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Metallurgical Society, Warrendale, PA, 1988; pp. 7792.Google Scholar
Was, G.S. and Andresen, P.L.: Irradiation-assisted stress-corrosion cracking in austenitic alloys. JOM 44, 8 (1992).CrossRefGoogle Scholar
Was, G.S. and Bruemmer, S.M.: Effects of irradiation on intergranular stress-corrosion cracking. J. Nucl. Mater. 216, 326 (1994).CrossRefGoogle Scholar
Allen, T.R. and Was, G.S.: Modeling radiation-induced segregation in austenitic Fe–Cr–Ni alloys. Acta Mater. 46, 3679 (1998).CrossRefGoogle Scholar
Nastar, M., Bellon, P., Martin, G., and Ruste, J.: Phase Transformations and Systems Driven Far from Equilibrium (Materials Research Society, Cambridge University Press, New York, NY, 1998).Google Scholar
Barnard, L., Tucker, J.D., Choudhury, S., Allen, T.R., and Morgan, D.: Modeling radiation induced segregation in Ni–Cr model alloys from first principles. J. Nucl. Mater. 425, 8 (2012).CrossRefGoogle Scholar
Tucker, J.D., Najafabadi, R., Allen, T.R., and Morgan, D.: Ab initio-based diffusion theory and tracer diffusion in Ni–Cr and Ni–Fe alloys. J. Nucl. Mater. 405, 216 (2010).CrossRefGoogle Scholar
Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, NY, 2009).CrossRefGoogle Scholar
Field, K.G., Barnard, L.M., Parish, C.M., Busby, J.T., Morgan, D., and Allen, T.R.: Dependence on grain boundary structure of radiation induced segregation in a 9wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 435, 172 (2013).CrossRefGoogle Scholar
Wharry, J.P. and Was, G.S.: A systematic study of radiation-induced segregation in ferritic–martensitic alloys. J. Nucl. Mater. 442, 7 (2013).CrossRefGoogle Scholar
Wharry, J.P. and Was, G.S.: The mechanism of radiation-induced segregation in ferritic–martensitic alloys. Acta Mater. 65, 42 (2014).CrossRefGoogle Scholar
Duh, T.S., Kai, J.J., Chen, F.R., and Wang, L.H.: Numerical simulation modeling on the effects of grain boundary misorientation on radiation-induced solute segregation in 304 austenitic stainless steels. J. Nucl. Mater. 294, 267 (2001).CrossRefGoogle Scholar
Sakaguchi, N., Shibayama, T., Kinoshita, H., and Takahashi, H.: Atomistic observation of radiation-induced grain-boundary movement in Fe–Cr–Ni alloy under electron irradiation. Philos. Mag. Lett. 81, 691 (2001).CrossRefGoogle Scholar
Barnard, L., Odette, G.R., Szlufarska, I., and Morgan, D.: An ab initio study of Ti–Y–O nanocluster energetics in nanostructured ferritic alloys. Acta Mater. 60, 935 (2012).CrossRefGoogle Scholar
Field, K.G., Miller, B.D., Chichester, H.J.M., Sridharan, K., and Allen, T.R.: Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 445, 143 (2014).CrossRefGoogle Scholar
Penisten, J.J.: The Mechanism of Radiation-Induced Segregation in Ferritic-Martensitic Steels (University of Michigan, Ann Arbor, MI, 2012).Google Scholar
Terentyev, D., Olsson, P., Klaver, T.P.C., and Malerba, L.: On the migration and trapping of single self-interstitial atoms in dilute and concentrated Fe–Cr alloys: Atomistic study and comparison with resistivity recovery experiments. Comput. Mater. Sci. 43, 1183 (2008).CrossRefGoogle Scholar
Jiao, Z., Shankar, V., and Was, G.S.: Phase stability in proton and heavy ion irradiated ferritic–martensitic alloys. J. Nucl. Mater. 419, 52 (2011).CrossRefGoogle Scholar
Wharry, J.P., Jiao, Z., Shankar, V., Busby, J.T., and Was, G.S.: Radiation-induced segregation and phase stability in ferritic–martensitic alloy T91. J. Nucl. Mater. 417, 140 (2011).CrossRefGoogle Scholar
Jiao, Z. and Was, G.S.: Precipitate evolution in ion-irradiated HCM12A. J. Nucl. Mater. 425, 105 (2012).CrossRefGoogle Scholar
Maloy, S.A., Toloczko, M.B., McClellan, K.J., Romero, T., Kohno, Y., Garner, F.A., Kurtz, R.J., and Kimura, A.: The effects of fast reactor irradiation conditions on the tensile properties of two ferritic/martensitic steels. J. Nucl. Mater. 356, 62 (2006).CrossRefGoogle Scholar
Jia, X. and Dai, Y.: Microstructure in martensitic steels T91 and F82H after irradiation in SINQ Target-3. J. Nucl. Mater. 318, 207 (2003).CrossRefGoogle Scholar
Klueh, R.L., Shiba, K., and Sokolov, M.A.: Embrittlement of irradiated F82H in the absence of irradiation hardening. J. Nucl. Mater. 386388, 191 (2009).CrossRefGoogle Scholar
Gelles, D.S.: Microstructural examination of commercial ferritic alloys at 200 dpa. J. Nucl. Mater. 233237, 293 (1996).CrossRefGoogle Scholar
Dubuisson, P., Gilbon, D., and Séran, J.L.: Microstructural evolution of ferritic-martensitic steels irradiated in the fast breeder reactor Phénix. J. Nucl. Mater. 205, 178 (1993).CrossRefGoogle Scholar
Anderoglu, O., Van den Bosch, J., Hosemann, P., Stergar, E., Sencer, B.H., and Bhattacharyya, D.: Phase stability of an HT-9 duct irradiated in FFTF. J. Nucl. Mater.. 430, 194 (2012).CrossRefGoogle Scholar
Sencer, B.H., Kennedy, J.R., Cole, J.I., Maloy, S.A., and Garner, F.A.: Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at 443 °C. J. Nucl. Mater. 393, 235 (2009).CrossRefGoogle Scholar
Gupta, G., Jiao, Z., Ham, A.N., Busby, J.T., and Was, G.S.: Microstructural evolution of proton irradiated T91. J. Nucl. Mater. 351, 162 (2006).CrossRefGoogle Scholar
Ziegler, J.F.: SRIM2006 Program (IBM Corp, Yorktown, New York, 2006).Google Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T., and Michael, J.: TEM sample preparation and FIB-induced damage. MRS Bull. 32, 400 (2007).CrossRefGoogle Scholar
Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level (Springer, New York, NY, 2000).CrossRefGoogle Scholar
Vaumousse, D., Cerezo, A., and Warren, P.J.: A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215 (2003).CrossRefGoogle ScholarPubMed
Homolová, V., Janovec, J., Záhumenský, P., and Výrostková, A.: Influence of thermal-deformation history on evolution of secondary phases in P91 steel. Mater. Sci. Eng., A 349, 306 (2003).CrossRefGoogle Scholar
Yamashita, S., Yano, Y., Tachi, Y., and Akasaka, N.: Effect of high dose/high temperature irradiation on the microstructure of heat resistant 11Cr ferritic/martensitic steels. J. Nucl. Mater. 386388, 135 (2009).CrossRefGoogle Scholar
Abe, F., Horiuchi, T., Taneike, M., and Sawada, K.: Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Mater. Sci. Eng., A 378, 299 (2004).CrossRefGoogle Scholar
Abe, F., Noda, T., and Okada, M.: Optimum alloy compositions in reduced-activation martensitic 9Cr steels for fusion reactor. J. Nucl. Mater. 195, 51 (1992).CrossRefGoogle Scholar
Odette, G.R. and Hoelzer, D.T.: Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. J. Mater. 62, 84 (2010).Google Scholar
de Carlan, Y., Bechade, J.L., Dubuisson, P., Seran, J.L., Billot, P., Bougault, A., Cozzika, T., Doriot, S., Hamon, D., Henry, J., Ratti, M., Lochet, N., Nunes, D., Olier, P., Leblond, T., and Mathon, M.H.: CEA developments of new ferritic ODS alloys for nuclear applications. J. Nucl. Mater. 386388, 430 (2009).CrossRefGoogle Scholar
Ukai, S., Mizuta, S., Fujiwara, M., Okuda, T., and Kobayashi, T.: Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation. J. Nucl. Sci. Technol. 39, 778 (2002).CrossRefGoogle Scholar
Hoelzer, D.T., Bentley, J., Sokolov, M.A., Miller, M.K., Odette, G.R., and Alinger, M.J.: Influence of particle dispersions on the high-temperature strength of ferritic alloys. J. Nucl. Mater. 367370, 166 (2007).CrossRefGoogle Scholar
Alinger, M.J., Odette, G.R., and Hoelzer, D.T.: On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostructured ferritic alloys. Acta Mater. 57, 392 (2009).CrossRefGoogle Scholar
Miller, M.K., Hoelzer, D.T., Kenik, E.A., and Russell, K.F.: Nanometer scale precipitation in ferritic MA/ODS alloy MA957. J. Nucl. Mater. 329333, 338 (2004).CrossRefGoogle Scholar
Marquis, E.A.: Core/shell structures of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe–Cr alloys. Appl. Phys. Lett. 93, 181904 (2008).CrossRefGoogle Scholar
Alinger, M.J., Wirth, B.D., Lee, H.J., and Odette, G.R.: Lattice Monte Carlo simulations of nanocluster formation in nanostructured ferritic alloys. J. Nucl. Mater. 367370, 153 (2007).CrossRefGoogle Scholar
Jiang, Y., Smith, J.R., and Odette, G.R.: Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys: A first-principles study. Phys. Rev. B 79, 064103 (2009).CrossRefGoogle Scholar
Demkowicz, M.J., Bellon, P., and Wirth, B.D.: Atomic-scale design of radiation-tolerant nanocomposites. MRS Bull. 35, 992 (2010).CrossRefGoogle Scholar
Brandes, M.C., Kovarik, L., Miller, M.K., Daehn, G.S., and Mills, M.J.: Creep behavior and deformation mechanisms in a nanocluster strengthened ferritic steel. Acta Mater. 60, 1827 (2012).CrossRefGoogle Scholar
Fu, C.L., Krčmar, M., Painter, G.S., and Chen, X.Q.: Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys. Rev. Lett. 99, 225502 (2007).CrossRefGoogle ScholarPubMed
Ribis, J. and de Carlan, Y.: Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 60, 238 (2012).CrossRefGoogle Scholar
Monnet, I., Dubuisson, P., Serruys, Y., Ruault, M.O., Kaïtasov, O., and Jouffrey, B.: Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels. J. Nucl. Mater. 335, 311 (2004).CrossRefGoogle Scholar
Allen, T.R., Gan, J., Cole, J.I., Miller, M.K., Busby, J.T., Shutthanandan, S., and Thevuthasan, S.: Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation. J. Nucl. Mater. 375, 26 (2008).CrossRefGoogle Scholar
Certain, A.G., Field, K.G., Allen, T.R., Miller, M.K., Bentley, J., and Busby, J.T.: Response of nanoclusters in a 9Cr ODS steel to 1 dpa, 525 °C proton irradiation. J. Nucl. Mater. 407, 2 (2010).CrossRefGoogle Scholar
Kishimoto, H., Kasada, R., Hashitomi, O., and Kimura, A.: Stability of Y–Ti complex oxides in Fe–16Cr–0.1Ti ODS ferritic steel before and after heavy-ion irradiation. J. Nucl. Mater. 386388, 533 (2009).CrossRefGoogle Scholar
Kishimoto, H., Yutani, K., Kasada, R., Hashitomi, O., and Kimura, A.: Heavy-ion irradiation effects on the morphology of complex oxide particles in oxide dispersion strengthened ferritic steels. J. Nucl. Mater. 367370, 179 (2007).CrossRefGoogle Scholar
Pareige, P., Miller, M.K., Stoller, R.E., Hoelzer, D.T., Cadel, E., and Radiguet, B.: Stability of nanometer-sized oxide clusters in mechanically-alloyed steel under ion-induced displacement cascade damage conditions. J. Nucl. Mater. 360, 136 (2007).CrossRefGoogle Scholar
Lescoat, M.L., Ribis, J., Gentils, A., Kaïtasov, O., de Carlan, Y., and Legris, A.: In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J. Nucl. Mater. 428, 176 (2012).CrossRefGoogle Scholar
Certain, A., Kuchibhatla, S., Shutthanandan, V., Hoelzer, D.T., and Allen, T.R.: Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J. Nucl. Mater. 434, 311 (2013).CrossRefGoogle Scholar
Certain, A., Lee Voigt, H.J., Allen, T.R., and Wirth, B.D.: Investigation of cascade-induced re-solution from nanometer sized coherent precipitates in dilute Fe–Cu alloys. J. Nucl. Mater. 432, 281 (2013).CrossRefGoogle Scholar
Lescoat, M.L., Ribis, J., Chen, Y., Marquis, E.A., Bordas, E., and Trocellier, P.: Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose. Acta Mater. 78, 328 (2014).CrossRefGoogle Scholar
Ziegler, J.F.: SRIM-2011 (IBM Corp, Yorktown, New York, 2011).Google Scholar
Kaoumi, D. and Adamson, J.: Self-ordered defect structures in two model F/M steels under in situ ion irradiation. J. Nucl. Mater. 448, 233 (2014).CrossRefGoogle Scholar
Kaoumi, D., Adamson, J., and Kirk, M.: Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0–2 dpa). J. Nucl. Mater. 445, 12 (2014).CrossRefGoogle Scholar
Topbasi, C., Motta, A.T., and Kirk, M.A.: In situ study of heavy ion induced radiation damage in NF616 (P92) alloy. J. Nucl. Mater. 425, 48 (2012).CrossRefGoogle Scholar
Ennis, P.J., Zielinska-Lipiec, A., Wachter, O., and Czyrska-Filemonowicz, A.: Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant. Acta Mater. 45, 4901 (1997).CrossRefGoogle Scholar
Topbasi, C., Kaoumi, D., and Motta, A.T.: Microstructural evolution in NF616 (P92) and 9Cr-model alloy under heavy ion irradiation. J. Nucl. Mater. in press.Google Scholar
Jenkins, M.L., Yao, Z., Hernández-Mayoral, M., and Kirk, M.A.: Dynamic observations of heavy-ion damage in Fe and Fe–Cr alloys. J. Nucl. Mater. 389, 197 (2009).CrossRefGoogle Scholar
Hernández-Mayoral, M., Yao, Z., Jenkins, M.L., and Kirk, M.A.: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88, 2881 (2008).CrossRefGoogle Scholar
Fukushima, H., Shimomura, Y., and Yoshida, H.: Radiation damage in SUS316 and ferritic steels. J. Nucl. Mater. 141143, 938 (1986).CrossRefGoogle Scholar
Kirk, M.A., Robertson, M., Vetrano, J.S., Jenkins, M.L., Funk, L.L., and Garner, F.H.: Radiation-induced changes in microstructure. In Proceedings of the 13th International Symposium of the ASTM, STP 955, Philadephia, Garner, F.H., Packan, N.H., and Kumar, A.S. eds. (ASTM, West Hanover, MA, 1987); p. 48.Google Scholar
Yao, Z., Hernández-Mayoral, M., Jenkins, M.L., and Kirk, M.A.: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: Damage evolution in thin-foils at lower doses. Philos. Mag. 88, 2851 (2008).CrossRefGoogle Scholar
Arakawa, K., Ono, K., Isshiki, M., Mimura, K., Uchikoshi, M., and Mori, H.: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956 (2007).CrossRefGoogle ScholarPubMed
Wirth, B.D., Odette, G.R., Maroudas, D., and Lucas, G.E.: Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J. Nucl. Mater. 276, 33 (2000).CrossRefGoogle Scholar
Calder, A.F., Bacon, D.J., Barashev, A.V., and Osetsky, Y.N.: Computer simulation of cascade damage in α-iron with carbon in solution. J. Nucl. Mater. 382, 91 (2008).CrossRefGoogle Scholar
Bacon, D.J., Osetsky, Y.N., Stoller, R., and Voskoboinikov, R.E.: MD description of damage production in displacement cascades in copper and α-iron. J. Nucl. Mater. 323, 11 (2003).CrossRefGoogle Scholar
Wirth, B.D.: How does radiation damage materials? Science 318, 923 (2007).CrossRefGoogle ScholarPubMed
Osetsky, N., Bacon, D.J., Serra, A., Singh, B.N., and Golubov, S.I.: One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper. Philos. Mag. 83, 61 (2003).CrossRefGoogle Scholar
Cottrell, A.H. and Bilby, B.: Dislocation theory of yielding and strain ageing of iron. Phys. Soc. 62, 49 (1949).CrossRefGoogle Scholar
Wirth, B.D., Hu, X., Kohnert, A., and Xu, D.: Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies. J. Mater. Res. 30(9), (2015).CrossRefGoogle Scholar
Phythian, W.J., Stoller, R.E., Foreman, A.J.E., Calder, A.F., and Bacon, D.J.: A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J. Nucl. Mater. 223, 245 (1995).CrossRefGoogle Scholar
Stoller, R.E.: The role of cascade energy and temperature in primary defect formation in iron. J. Nucl. Mater. 276, 22 (2000).CrossRefGoogle Scholar
Shim, J.H., Lee, H.J., and Wirth, B.D.: Molecular dynamics simulation of primary irradiation defect formation in Fe–10%Cr alloy. J. Nucl. Mater. 351, 56 (2006).CrossRefGoogle Scholar
Fu, C.C., Willaime, F., and Ordejón, P.: Stability and mobility of mono- and di-interstitials in alpha-iron. Phys. Rev. Lett. 92, 175503 (2004).CrossRefGoogle Scholar
Willaime, F., Fu, C.C., Marinica, M.C., and Torre, J.D.: Stability and mobility of self-interstitials and small interstitial clusters in α-iron: Ab initio and empirical potential calculations. Nucl. Instrum. Methods Phys. Res., Sect. B 228, 92 (2005).CrossRefGoogle Scholar
Osetsky, Y.N., Bacon, D.J., Serra, A., Singh, B.N., and Golubov, S.I.: Stability and mobility of defect clusters and dislocation loops in metals. J. Nucl. Mater. 276, 65 (2000).CrossRefGoogle Scholar
Soneda, N. and Diaz de La Rubia, T.: Migration kinetics of the self-interstitial atom and its clusters in bcc Fe. Philos. Mag. A 81, 331 (2001).CrossRefGoogle Scholar