Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:51:22.323Z Has data issue: false hasContentIssue false

Characterization of metal-containing amorphous hydrogenated carbon films

Published online by Cambridge University Press:  31 January 2011

M. Wang
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-5170 Jülich, Germany
K. Schmidt
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-5170 Jülich, Germany
K. Reichelt
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-5170 Jülich, Germany
H. Dimigen
Affiliation:
Fraunhofer-Institut für Schicht- und Oberflächentechnik, Vogt-Kölln-Straβe 30, D-2000 Hamburg 54, Germany
H. Hübsch
Affiliation:
Fraunhofer-Institut für Schicht- und Oberflächentechnik, Vogt-Kölln-Straβe 30, D-2000 Hamburg 54, Germany
Get access

Abstract

Metal-containing amorphous hydrogenated carbon (Me–C: H) films were prepared on silicon substrates. Two kinds of metals (Ti, Ta) were incorporated in the process of reactive rf diode— (13.56 MHz) and DC-magnetron sputtering, respectively. Elastic recoil detection (ERD) and Rutherford backscattering (RBS) of MeV He+ ions were used to determine the hydrogen content and mass density of Me–C: H films. The mechanical properties, i.e., microhardness, Young's modulus, and adhesion, were measured with the help of a nanoindenter and scratch tester. Results show that (1) the mechanical properties of Me–C: H films depend mainly on metal concentrations. At a certain metal concentration, optimal hardness, Young's modulus, and critical load were obtained; (2) the M–C: H films with an optimal metal concentration possess similar hardness, Young's modulus, and higher critical load compared with the corresponding values of diamond-like carbon (a–C: H) films, due to the improvement of the toughness of the films by the incorporation of metals. Therefore, Me–C: H films show high promise of being wear-resistant protective coatings.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aisenberg, S. and Chabot, R., J. Appl. Phys. 42, 2950 (1971).CrossRefGoogle Scholar
2Enke, K., Thin Solid Films 80, 227 (1981).CrossRefGoogle Scholar
3Mori, T. and Namba, Y., J. Appl. Phys. 55, 3276 (1984).CrossRefGoogle Scholar
4Dischler, B., Bubenzer, A., and Koidl, P., Appl. Phys. Lett. 42, 636 (1983).CrossRefGoogle Scholar
5Wild, C. and Koidl, P., Appl. Phys. Lett. 51, 1506 (1987).CrossRefGoogle Scholar
6Angus, J. C., Koidl, P., and Domitz, S., Plasma Deposition Thin Film, edited by Mort, J. and Jansen, F. (CRC Press, Boca Raton, FLs, 1986), Chap. IV.Google Scholar
7Robertson, J., Adv. Phys. 35, 317 (1986).CrossRefGoogle Scholar
8Khan, A. A., Woollam, J.A., and Chung, Y., Solid-State Electron 27, 385 (1984).CrossRefGoogle Scholar
9Khan, A.A., Woollam, J.A., and Chung, Y., IEEE Electron Dev. Lett. 4, 146 (1983).CrossRefGoogle Scholar
10Kakuchi, M., Hikita, M., and Tamamura, T., Appl. Phys. Lett. 48, 835 (1986)CrossRefGoogle Scholar
11Pethica, J.B., Koidl, P., Gobrecht, J., and Schiiler, C., J. Vac. Sci. Technol. A3, 239 (1985).CrossRefGoogle Scholar
12Jiang, X., Reichelt, K., and Stritzker, B., J. Appl. Phys. 68 (3), 1018 (1990).CrossRefGoogle Scholar
13Dimigen, H. and Hiibsch, H., Philips Techn. Rev. 41 186 (1983/1984).Google Scholar
14Dimigen, H. and Hübsch, H., U.S. Patent No. 4525417 (1985).Google Scholar
15Dimigen, H., Hübsch, H., and Memming, R., Appl. Phys. Lett. 50, 1056 (1987).CrossRefGoogle Scholar
16Schmidt, K., Reichelt, K., Stritzker, B., and Zou, J., Fresenius Anal. Chem. 333 326 (1989)CrossRefGoogle Scholar
17Zou, J.W., Reichelt, K., Schmidt, K., and Dischler, B., J. Appl. Phys. 65 (10), 3914 (1989).CrossRefGoogle Scholar
18L'Ecuyer, J., Brassard, C., and Cardinal, C., Nucl. Instrum. Methods 149 271 (1978).CrossRefGoogle Scholar
19Turos, A. and Meyer, G., Nucl. Instrum. Methods B4 92 (1984).CrossRefGoogle Scholar
20Pretorius, R., Peisach, M., and Mayer, J. W., Nucl. Instrum. Methods B35 478 (1985).CrossRefGoogle Scholar
21Doolittle, L. R., Nucl. Instrum. Methods B9 344 (1985).CrossRefGoogle Scholar
22Chu, W-K., Mayer, J. W., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
23Sneddon, I.N., Int. J. Engr. Sci. 3, 47 (1965).CrossRefGoogle Scholar
24Hertz, H., J. Reine Angew. Math. 92, 156 (1881); reprinted in English in Hertz's Miscellaneous Papers (MacMillan, London, 1896).Google Scholar
25Jiang, X., Reichelt, K., and Stritzker, B., J. Appl. Phys. 66, 5805 (1989).CrossRefGoogle Scholar
26Wang, M. and Reichelt, K., “Depth sensing Nanoindentation-test: relation between hardness, elastic modulus and penetrating depth”, to be published.Google Scholar
27Jiang, X., Wang, M., Schmidt, K., Dunlop, E., Haupt, J., and Gissler, W., J. Appl. Phys. 69, 3053 (1991).CrossRefGoogle Scholar
28Lawn, B. R. and Marshall, D. B., J. Am. Ceram. Soc. 62, 347 (1979).CrossRefGoogle Scholar
29Davis, L.A., Scripta Metall. 9, 431 (1975).CrossRefGoogle Scholar
30Hill, R., The Mathematical Theory of Plasticity (Oxford University Press, London, 1967), p. 213.Google Scholar
31Kimura, H. and Masumoto, T., in Amorphous Metallic Alloys, edited by Luborsky, F. E. (Butterworth, London, 1983), p.187.Google Scholar
32Wang, M., Jiang, X., and Stritzker, B., Thin Solid Films 197 57 (1991)CrossRefGoogle Scholar
33Klages, C.P., Köberle, H., Bauer, M., and Memming, R., 1st Int. Symp. on Diamond and Diamond-like Films, Los Angeles, CA, May 7–12, 1989.Google Scholar
34Klages, C.P. and Memming, R., Mater. Sci. Forum 52 & 53, 609644 (1989);copyrigfht Trans Tech Publications, Switzerland.Google Scholar