Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T02:27:17.788Z Has data issue: false hasContentIssue false

Characterization of homogenous and plastically graded materials with spherical indentation and inverse analysis

Published online by Cambridge University Press:  23 September 2011

Charbel Moussa*
Affiliation:
LaRMAUR—Indentation, Campus de Beaulieu, 35042 Rennes, France; and FAURECIA Automotive seating, Le pont de vère, 61100 Caligny, France
Olivier Bartier
Affiliation:
LaRMAUR—Indentation, Campus de Beaulieu, 35042 Rennes, France
Gérard Mauvoisin
Affiliation:
LaRMAUR—Indentation, Campus de Beaulieu, 35042 Rennes, France
Philippe Pilvin
Affiliation:
Laboratoire d’Ingénierie des Matériaux de Bretagne, Université de Bretagne-Sud, BP 92116-56321 Lorient Cedex, France
Guillaume Delattre
Affiliation:
FAURECIA Automotive seating, Le pont de vère, 61100 Caligny, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This study investigates spherical indentation of plastically graded materials (PGMs). The hardness of these materials decreases with depth due to microstructural or compositional changes. To predict the behavior of PGM, the knowledge of the plastic properties of the surface and the substrate is necessary. In this work, the spherical indentation technique is applied on carbonitrided steels to obtain their mechanical properties. First, spherical indentation was applied to characterize homogenous materials using inverse analysis. The comparison with tensile test’s results shows that the inverse analysis using spherical indentation data is a reliable method to determine the plastic properties of homogeneous materials. In the second part spherical indentation was used to characterize carbonitrided steels using inverse analysis to obtain plastic properties of the surface. The results show that spherical indentation using inverse analysis has a real potential for evaluating mechanical properties of PGM.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cao, Y.P. and Lu, J.: A new scheme for computational modeling of conical indentation in plastically graded materials. J. Mater. Res. 19(6), 1703 (2004).CrossRefGoogle Scholar
2.Garnier, V. and Corneloup, G.: Determining of the evolution of the elasticity modulus by surface wave according to the depth in a nitrided layer. Ultrasonics 34(2–5), 401 (1996).CrossRefGoogle Scholar
3.Giannakopoulos, A.E.: Indentation of plastically graded substrates by sharp indentors. Int. J. Solids Struct. 39, 2495 (2002).CrossRefGoogle Scholar
4.Nayebi, A., El Abdi, R., Bartier, O., and Mauvoisin, G.: New procedure to determine steel mechanical parameters from the spherical indentation technique. Mech. Mater. 34, 243 (2002).CrossRefGoogle Scholar
5.Collin, J.M., Mauvoisin, G., Bartier, O., El Abdi, R., and Pilvin, P.: Use of spherical indentation data changes to materials characterization based on a new multiple cyclic loading protocol. Mater. Sci. Eng., A 501, 608 (2009).Google Scholar
6.Lee, H., Lee, J.H., and Pharr, G.M.: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037 (2005).CrossRefGoogle Scholar
7.Cao, Y.P. and Lu, J.: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023 (2004).CrossRefGoogle Scholar
8.Ogasawara, N., Chiba, N., and Chen, X.: Measuring the plastic properties of bulk materials by indentation test. Scr. Mater. 54, 65 (2006).CrossRefGoogle Scholar
9.Zhao, M., Ogasawara, N., Chiba, N., and Chen, X.: A new approach to measure the elastic–plastic properties of bulk materials using spherical indentation. Acta Mater. 54, 23 (2006).CrossRefGoogle Scholar
10.Lee, J.H., Kim, T., and Lee, H.: A study on robust indentation techniques to evaluate elastic–plastic properties of metals. Int. J. Solids Struct. 47, 647 (2010).CrossRefGoogle Scholar
11.Jiang, P., Zhang, T., Feng, Y., Yang, R., and Liang, N.: Determination of plastic properties by instrumented spherical indentation: Expanding cavity model and similarity solution approach. J. Mater. Res. 24(3), 1045 (2009).CrossRefGoogle Scholar
12.Ogasawara, N., Chiba, N., and Chen, X.: A simple framework of spherical indentation for measuring elastoplastic properties. Mech. Mater. 41, 1025 (2009).CrossRefGoogle Scholar
13.Zhang, T., Jiang, P., Feng, Y., and Yang, R.: Numerical verification for instrumented spherical indentation techniques in determining the plastic properties of materials. J. Mater. Res. 24(12), 3653 (2009).CrossRefGoogle Scholar
14.Branch, N.A., Subhash, G., Arakere, N.K., and Klecka, M.A.: A new reverse analysis to determine the constitutive response of plastically graded case hardened bearing steels. Int. J. Solids Struct. 48, 584 (2011).CrossRefGoogle Scholar
15.Choi, I.S., Dao, M., and Suresh, S.: Mechanics of indentation of plastically graded materials—I: Analysis. J. Mech. Phys. Solids 56, 157 (2008).CrossRefGoogle Scholar
16.Choi, I.S., Detor, A.J., Schwiger, R., Dao, M., Schuh, C.A., and Suresh, S.: Mechanics of indentation of plastically graded materials—II: Experiments on nanocrystalline alloys with grain size gradients. J. Mech. Phys. Solids 56, 172 (2008).CrossRefGoogle Scholar
17.Dao, M., Chollacoop, N., Van Vliet, K.J., Vankatesh, T.A., and Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49(19), 3899 (2001).CrossRefGoogle Scholar
18.Chicot, D., Gil, L., Silva, K., Roudet, F., Puchi-Cabrera, E.S., Staia, M.H., and Teer, D.G.: Thin film hardness determination using indentation loading curve modelling. Thin Solid Films 518, 5565 (2010).CrossRefGoogle Scholar
19.Zhang, F., Saha, R., Huang, Y., Nix, W.D., Hwang, K.C., Ku, S., and Li, M.: Indentation of a hard film on a soft substrate: Strain gradient hardening effects. Int. J. Plast. 23, 25 (2007).CrossRefGoogle Scholar
20.Zhao, M., Xiang, Y., Xu, J., Ogasawara, N., Chiba, N., and Chen, X.: Determining mechanical properties of thin films from the loading curve of nanoindentation testing. Thin Solid Films 516, 7571 (2008).CrossRefGoogle Scholar
21.Knapp, J.A. and Browning, J.F.: Nanoindentation characterization of ErT2 thin films. J. Nucl. Mater. 350, 147 (2006).CrossRefGoogle Scholar
22.Nayebi, A., El Abdi, R., Bartier, O., and Mauvoisin, G.: Hardness profile analysis of elasto-plastic heat-treated steels with a gradient in yield strength. Mater. Sci. Eng., A 333, 160 (2002).CrossRefGoogle Scholar
23.Nakamura, T., Wang, T., and Sampath, S.: Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater. 18, 4293 (2000).CrossRefGoogle Scholar
24.Gu, Y., Nakamura, T., Prchlik, L., Sampath, S., and Wallace, J.: Micro-indentation and inverse analysis to characterize elastic/plastic graded materials. Mater. Sci. Eng., A 345, 233 (2003).CrossRefGoogle Scholar
25.Johnson, K.L.: Contact Mechanics (Cambridge University Press, London, 1985).CrossRefGoogle Scholar
26.Fischer-Cripps, A.C.: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Tech. 200, 4153 (2006).CrossRefGoogle Scholar
27.VanLandingham, M.R.: Review of instrumented indentation. J. Res. Natl. Inst. Stand. Technol. 108, 249 (2003).CrossRefGoogle ScholarPubMed
28.Cheng, Y-T. and Cheng, C-M.: Can stress strain relationship be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res. 14(9), 3493 (1999).CrossRefGoogle Scholar
29.Bhattacharya, A.K. and Nix, W.D.: Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int. J. Solids Struct. 24, 1287 (1988).CrossRefGoogle Scholar
30.Gao, X.L., Jing, X.N., and Subhash, G.: Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 43, 2193 (2006).CrossRefGoogle Scholar
31.Bartier, O., Hernot, X., and Mauvoisin, G.: Theoretical and experimental analysis of contact radius for spherical indentation. Mech. Mater. 42, 640 (2010).CrossRefGoogle Scholar
32.Pilvin, P.: Approaches multi-échelles pour la prévision du comportement anélastique des métaux. PhD Thesis (ENS Cachan, CRNS, Université Paris 6, France, 1990).Google Scholar
33.Chean, V., Robin, E., El Abdi, R., Sangleboeuf, J-C, and Houizot, P.: Use of the mark-tracking method for optical fiber characterization. Optic Laser Technol. 43, 1172 (2011).CrossRefGoogle Scholar