Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:14:35.589Z Has data issue: false hasContentIssue false

Characterization of GaAs solar cells made by ion implantation and rapid thermal annealing using selective photoetching

Published online by Cambridge University Press:  31 January 2011

W.G.J.H.M. van Sark
Affiliation:
Department of Experimental Solid State Physics, RIM, Faculty of Science, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
J.L. Weyher
Affiliation:
Department of Experimental Solid State Physics, RIM, Faculty of Science, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
L.J. Giling
Affiliation:
Department of Experimental Solid State Physics, RIM, Faculty of Science, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
M. de Potter
Affiliation:
IMEC v.z.w., Kapeldreef 75, 3030 Leuven, Belgium
M. van Rossum
Affiliation:
IMEC v.z.w., Kapeldreef 75, 3030 Leuven, Belgium
Get access

Abstract

Shallow n-p GaAs solar cells have been made by implantation of Si into Zn-doped (p-type) GaAs substrates followed by rapid thermal annealing. The structure of the GaAs crystal has been determined by the DSL photoetching method (Diluted Sirtl-like etchants used with Light). It was found that implantation-induced-damage (revealed by DSL as microroughness and craters) was not removed after annealing for energies exceeding 60 keV. This leads to substrates that contain many precipitates, which appears to be disastrous for the fabrication of good solar cells. In addition, good cell performance is hampered by compensation effects in the n-p transition region and in the n-type layer itself.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kressel, H., in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1981), Vol. 16, pp. 152.Google Scholar
2Green, M. A., Solar Cells: Operating Principles, Technology, and System Applications (Prentice Hall, New York, 1982).Google Scholar
3Flood, D. and Brandhorst, H., in Current Topics in Photovoltaics, edited by Couts, T. J. and Meakin, J. D. (Academic Press, New York, 1987), Vol. 2, pp. 143202.Google Scholar
4Ahrenkiel, R. K., in Current Topics in Photovoltaics, edited by Couts, T. J.and Meakin, J. D. (Academic Press, New York, 1988), Vol. 3, pp. 178.Google Scholar
5Ueda, O., Electrochem, J.. Soc. 135, 11C(1988).Google Scholar
6Chin, A. K., J. Cryst. Growth 70, 582(1984).CrossRefGoogle Scholar
7Nanishi, Y., Miyazawa, S., and Matsuoka, Y., in Defect Recognition and Image Processing in III-V Compounds, edited by Fillard, J. R. (Elsevier, Amsterdam, 1985), pp. 225240.Google Scholar
8Michel, C. G., Vendura, G. J., and Marek, H. S., J. Electron. Mater. 16, 295(1987).CrossRefGoogle Scholar
9de Raedt, W., van Hove, M., de Potter, M., van Rossum, M., and Weyher, J. L., Inst. Phys. Conf. Ser. 91, 685(1987).Google Scholar
10Fan, J. C. C., Bolzer, C. O., and Chapman, R. L., Appl. Phys. Lett. 32, 390(1978).CrossRefGoogle Scholar
11Pearton, S. J., Poate, J. M., Sette, F., Gibson, J. M., Jacobson, D. C., and Wiliams, J.S., Nucl. Instr. and Meth. B19/20, 369(1987).CrossRefGoogle Scholar
12Graf, V. and Heuberger, W., Nucl. Instr. and Meth. B19/20, 388(1987).CrossRefGoogle Scholar
13Saitoh, T., Matsubara, S., and Minagawa, S., J. Electrochem. Soc. 122, 670(1975).CrossRefGoogle Scholar
14Weyher, J. L. and van de Ven, J., J. Cryst. Growth 63, 285(1983).CrossRefGoogle Scholar
15van de Ven, J., Weyher, J. L., van den Meerakker, J. E. A. M., and Kelly, J. J., J. Electrochem. Soc. 133, 799(1986).CrossRefGoogle Scholar
16de Potter, M., de Raedt, W., van Hove, M., van Rossum, M., and Weyher, J. L., Proc. of the E-MRS Meeting, June 1987, edited by Nissim, Y. I. and Glasow, P. A.(Les Editions de Physique, Paris, 1987), Vol. XVI, pp. 227233.Google Scholar
17Weyher, J. L. and van de Ven, J.J. Cryst. Growth 78, 191(1986).CrossRefGoogle Scholar
18Weyher, J. L. and van de Ven, J., J. Cryst. Growth 88, 221(1988).CrossRefGoogle Scholar
19 Courtesy of P. Montgomery, USTL-CEM, Montpellier, France.Google Scholar
20Polman, A., van Sark, W. G. J. H. M., Sinke, W. C., and Saris, F.W., Solar Cells 17, 241(1986).CrossRefGoogle Scholar
21Polman, A., Vredenberg, A. M., Urbanus, W. H., van Deenen, P. J., Alberda, H., Krop, H., Attema, I., de Haas, E., Kersten, H., Doorn, S., Derks, J., Beek, J. ter, Roorda, S., Schreutelkamp, R., Bannenberg, J. G., and Saris, F.W., Nucl. Instr. and Meth. B37/38, 935(1989).CrossRefGoogle Scholar
22Koelewijn, W. A., Koudijs, R., and Sinke, W.C., Mater. Sci. Eng. B2, 243(1989).CrossRefGoogle Scholar
23Chu, W. K., Mayer, J. W., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
24Appleton, B. R. and Foti, G., in Ion Beam Handbook for Material Analysis, edited by Mayer, J.W. and Rimini, E. (Academic Press, New York, 1977), pp. 69107.Google Scholar
25Sadana, D.K., Nucl. Instr. and Meth. B7/8, 375(1985).CrossRefGoogle Scholar
26Weyher, J. L. and Frigeri, C. (unpublished results).Google Scholar
27Darby, D.B., Augustus, P.D., Booker, G.R., and Stirland, D. J., J. Microscopy 118, 343(1980).CrossRefGoogle Scholar
28Tang, X., Lochs, H. G. M., Hageman, P. R., de Croon, M. H. J. M., Giling, L. J., and Bons, A. J., J. Cryst. Growth 98, 827(1989).CrossRefGoogle Scholar
29Stewart, C. P., Blunt, R.T., Booker, G. R., and Sanders, I. R., Physica 116B, 635(1983).Google Scholar
30Gwilliam, R., Deol, R. S., Blunt, R.T., and Sealy, B. J., Inst. Phys. Conf. Ser. 87, 315(1987).Google Scholar
31Grimaldi, M.G., Paine, B. M., Nicolet, M-A., and Sadana, D., J. Appl. Phys. 52, 4038(1981).CrossRefGoogle Scholar
32Weyher, J. L. and van Sark, W. G. J. H. M., PEO Report no. 27.21.004.10 (October 1988).Google Scholar
33Tang, X., van Sark, W.G.J.H.M., Weyher, J.L., de Croon, M.H.J.M., Lochs, H. G. M., and Giling, L. J., Proc. of the 8th E. C. Photovoltaic Solar Energy Conference, edited by Solomon, I., Equer, B., and Helm, P. (Kluwer Academic Publ., Dordrecht, 1988), p. 1497.Google Scholar
34Nathan, M. I. and Morgan, T. N., in Physics of Quantum Electronics, edited by Kelley, P. L., Lax, B., and Tannenwald, P. E. (Graw-Hill, New York, 1966), pp. 478486.Google Scholar
35Warwick, C. A., Gill, S. S., Wright, P. J., and Cullis, A. G., Inst. Phys. Conf. Ser. 76, 365(1985).Google Scholar
36Keavney, C. J., Vernon, S. M., and Haven, V. E., Proc. of the 20th IEEE Photovoltaic Specialists Conference (1988), p. 654.Google Scholar