Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T09:15:02.013Z Has data issue: false hasContentIssue false

Characterization of epitaxial SrTiO3/YBa2Cu3O7 layers deposited on (001) MgO by laser ablation

Published online by Cambridge University Press:  03 March 2011

P. Scardi*
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, I-38050 Mesiano (TN), Italy
L. Lutterotti
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, I-38050 Mesiano (TN), Italy
L. Correra
Affiliation:
CNR–Istituto LAMEL, via Castagnoli 1, I-40127 Bologna, Italy
S. Nicoletti
Affiliation:
CNR–Istituto LAMEL, via Castagnoli 1, I-40127 Bologna, Italy
*
a)Address correspondence to this author.
Get access

Abstract

We discuss the results obtained for SrTiO3/YBa2Cu3O7 layers deposited on (001) MgO substrates by UV pulsed laser ablation. Different samples were prepared to study both the growth of a thin (55 nm) layer of SrTiO3 on MgO and the successive epitaxy of a 220 nm YBa2Cu3O7 (YBCO) film on the SrTiO3 layer. An x-ray diffraction (XRD) texture analysis is reported for the bilayers together with resistivity versus temperature and critical current density (Jc) measurements of the superconducting films. The results show that YBCO grains grow with c-axis normal to the surface; the main in-plane orientations are [100] MgO // [100] SrTiO3 // [100] YBCO ([010] YBCO). The XRD line broadening analysis suggests that YBCO columnar grains grow along the whole thickness of the film, also evidencing dislocations and/or faulting separated by a mean distance of 80 nm. The values obtained for the critical current of the superconductor demonstrate the effectiveness of the SrTiO3 intermediate layer in improving the structural quality of the YBCO film.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Laderman, S. S., Taber, R. C., Jacowitz, R. D., Moll, J. L., Eom, C. B., Hylton, T. L., Marshall, A. F., Geballe, T. H., and Beasley, M. R., Phys. Rev. B 43, 2922 (1991).CrossRefGoogle Scholar
2Gergis, I. S., Cheung, J. T., Trinh, T. N., Sovero, E. A., and Kobrin, P. H., Appl. Phys. Lett. 60, 2026 (1992).CrossRefGoogle Scholar
3Cole, B. F., Liang, G-C., Newman, N., Char, K., Zaharchuk, G., and Martens, J. S., Appl. Phys. Lett. 61, 1727 (1992).CrossRefGoogle Scholar
4Giess, E. A., Sandstrom, R. L., Gallagher, W. I., Gupta, A., Shinde, S. L., Cook, R. F., Cooper, E. I., O'Sullivan, E.J.M., Roldan, J. M., Segmiiller, A. P., and Angilello, J., I.B.M. J. Res. Develop. 34, 916 (1990).Google Scholar
5Char, K., Newman, N., Garrison, S. M., Barton, R. W., Taber, R. C., Laderman, S. S., and Jancowitz, R. D., Appl. Phys. Lett. 57, 409 (1990).CrossRefGoogle Scholar
6Schmidt, H., Hradil, K., Hosier, W., Wersing, W., Gieres, G., and Seebock, R. J., Appl. Phys. Lett. 59, 222 (1991).CrossRefGoogle Scholar
7Moeckly, B. H., Russek, S. E., Lathrop, D. K., Li, Jan, and Mayer, J.W., Appl. Phys. Lett. 57, 1687 (1990).CrossRefGoogle Scholar
8Lamagna, A., Nicoletti, S., Balmaseda, M. Sanchez, Migliori, A., Fabbri, R., and Correra, L., Supercond. Sci. Technol. 5, 117 (1992).CrossRefGoogle Scholar
9Cheung, J. T., Gergis, I., James, M., and DeWames, R. E., Appl. Phys. Lett. 60, 3180 (1992).CrossRefGoogle Scholar
10Bianconi, M., Bobbio, G., Correra, L., Lamagna, A., Nicoletti, S., Sanchez Balmaseda, M., and Soncini, W., Mater. Sci. Eng. B 13, 21 (1992).CrossRefGoogle Scholar
11Scardi, P., Lutterotti, L., and Maistrelli, P., in Accuracy in Powder Diffraction H, edited by Piince, E. and Stalick, J. K. (NIST Special Publication 846, Gaithersburg, MD), p. 216.Google Scholar
12Powder Diffraction File, Swarthmore, PA, International Centre for Diffraction Data (1988).Google Scholar
13Warren, B. E. and Averbach, B.L., J. Appl. Phys. 21, 595599 (1950).CrossRefGoogle Scholar
14Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures for Poly crystalline and Amorphous Materials, 2nd ed. (J. Wiley and Sons, New York, 1974), p. 650.Google Scholar
15Scardi, P., Lutterotti, L., and Di Maggio, R., Powder Diffraction 6, 2025 (1991).CrossRefGoogle Scholar
16Benedetti, A., Fagherazzi, G., Enzo, S., and Battagliarin, M., J. Appl. Crystallogr. 21, 543549 (1988).CrossRefGoogle Scholar
17Scardi, P., Kothari, D. C., and Guzman, L., Thin Solid Films 195, 213233 (1991).CrossRefGoogle Scholar
18Warren, B. E., X-ray Diffraction (Dover, New York, 1990), p. 291.Google Scholar
19Rothman, R. L. and Cohen, J. B., J. Appl. Phys. 42, 971979 (1971).CrossRefGoogle Scholar
20Nandi, R. K., Kuo, H. K., Schlosberg, W., Wissler, G., Cohen, J. B., and Crist, B. Jr., J. Appl. Crystallogr. 17, 2226 (1984).CrossRefGoogle Scholar
21Scardi, P., Lutterotti, L., and Di Maggio, R., in Advances in X-ray Analysis, edited by Barrett, C.S., Gilfrich, J. V., Huang, T. C., Jenkins, R., McCarthy, G. J., Predecki, P. K., Ryon, R., and Smith, D.K. (Plenum Press, New York, 1992), Vol. 35A, pp. 6976.Google Scholar