Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T22:40:09.889Z Has data issue: false hasContentIssue false

Characterization of composite carbon coatings deposited by dc cathodic arc technique

Published online by Cambridge University Press:  31 January 2011

B. Rother
Affiliation:
Technische Universität Chemnitz, Sektion Physik-Elektronische Bauelemente, PF 964, Chemnitz (Karl-Marx-Stadt), 9010, Germany
J. Siegel
Affiliation:
Technische Universität Chemnitz, Sektion Physik-Elektronische Bauelemente, PF 964, Chemnitz (Karl-Marx-Stadt), 9010, Germany
K. Breuer
Affiliation:
Technische Universität Chemnitz, Sektion Physik-Elektronische Bauelemente, PF 964, Chemnitz (Karl-Marx-Stadt), 9010, Germany
I. Mühling
Affiliation:
Technische Universität Chemnitz, Sektion Physik-Elektronische Bauelemente, PF 964, Chemnitz (Karl-Marx-Stadt), 9010, Germany
S. Deutschmann
Affiliation:
Technische Universität Chemnitz, Sektion Physik-Elektronische Bauelemente, PF 964, Chemnitz (Karl-Marx-Stadt), 9010, Germany
J. Vetter
Affiliation:
Technische Universität Chemnitz, Sektion Physik-Elektronische Bauelemente, PF 964, Chemnitz (Karl-Marx-Stadt), 9010, Germany
G. Trommer
Affiliation:
Technische Universität Chemnitz, Sektion Physik-Elektronische Bauelemente, PF 964, Chemnitz (Karl-Marx-Stadt), 9010, Germany
B. Rau
Affiliation:
Technische Universität Chemnitz, Sektion Physik-Elektronische Bauelemente, PF 964, Chemnitz (Karl-Marx-Stadt), 9010, Germany
C. Heiser
Affiliation:
Zentralinstitut für Kernforschung, Akademie der Wissenschaften der DDR, Rossendorf, PF 19, Dresden, 8051, Germany
Get access

Abstract

Carbon films deposited by a modified dc cathodic arc technique were characterized by several analytical methods. The coatings consist of two constituents originating from process characteristics of the technique applied. Small fragments of graphite are embedded in a matrix material of an amorphous structure with diamond-like short-range order. The coatings exhibit friction and wear reducing properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Martin, P. J., Filipczuk, S. W., Netterfield, R. P., Field, J. S., Whitnall, D. F., and McKenzie, D. R., J. Mater. Sci. Lett. 7, 410 (1988).CrossRefGoogle Scholar
2Rother, B., Siegel, J., and Vetter, J., Thin Solid Films 188, 293 (1990).CrossRefGoogle Scholar
3Vacuum Arcs—Theory and Application, edited by Lafferty, J. M. (John Wiley and Sons, New York, 1980).Google Scholar
4Eckhardt, G., J. Appl. Phys. 46, 3281 (1975).CrossRefGoogle Scholar
5Aksenov, I. I., Belous, V. A., Padalka, V. G., and Khoroshikh, V. M., Fizika plazmy 4, 173 (1978).Google Scholar
6Aksenov, I. I., Belous, V. A., Padalka, V. G., and Khoroshikh, V. M., FRG-patent 3 211264 (1982).Google Scholar
7Strel'nitskii, V. E., Padalka, V. G., and Vakula, V. G., Zh. Tekh. Fiz. 48, 377 (1978).Google Scholar
8Berger, S. D., McKenzie, D. R., and Martin, P. J., Philos. Mag. Lett. 57 6, 285 (1988).CrossRefGoogle Scholar
9Rother, B., Surface Engineering 4, 335 (1988).CrossRefGoogle Scholar
10Diffraction Studies on Non-crystalline Substances, edited by Hargittai, I. and Orvill-Thomas, W. J. (Akademiai Kiado, Budapest, 1981).Google Scholar
11Miihling, I., Thesis, Technological University of Karl-Marx-Stadt (Chemnitz), 1989.Google Scholar
12Raether, H., “Excitation of Plasmons and Interband Transitions by Electrons”, Springer Tracts in Modern Physics (Springer, Berlin, 1980), Vol. 88, p. 16.Google Scholar
13Rudolph, W., Bauer, C., Gippner, P., Grambole, D., Heiser, C., Herrmann, F., and Thomas, H. J., J. Radioanal. Chem. 83, 99 (1984).CrossRefGoogle Scholar
14Vetter, J. and Rochotzki, R., Neue Hiitte 34, 7, 272 (1989).Google Scholar
15Fröhlich, F., Grau, P., and Grellmann, W., Phys. Status Solidi A 42, 763 (1977).CrossRefGoogle Scholar
16Weiß, H-J., Phys. Status Solidi A99, 491 (1987).CrossRefGoogle Scholar
17Weissmantel, C., in Thin Film Formation from Free Atoms and Particles, edited by Klabunde, J. (Academic Press, New York, 1985), p. 185.Google Scholar
18Kurdjumov, A. V. and Piljankewitsch, A. N., Phase Transitions in Carbon and Boron Nitride (Naukova Dumka, Kiev, 1979), pp. 1550 (in Russian).Google Scholar
19Mühling, I., Bewilogua, K., and Breuer, K., Thin Solid Films 187, 65 (1990).CrossRefGoogle Scholar
20Venghaus, H., Phys. Status Solidi B 71, 609 (1975).CrossRefGoogle Scholar
21Zeppenfeld, K., Thesis, Universität Hamburg, 1969.Google Scholar
22Leapman, R. D., Fejes, P. L., and Silcox, J., Phys. Rev. B 28, 2361 (1983).CrossRefGoogle Scholar
23Fink, J., Müller-Heinzeling, Th., Pflüger, J., Bubenzer, A., Koidl, P., and Grizelius, G., Solid State Commun. 47, 687 (1983).CrossRefGoogle Scholar
24Erler, H-J., Thesis, Technische Universitat Chemnitz, 1990.Google Scholar
25Bohdansky, J., Croessmann, C. D., Linke, J., McDonald, J. M., Morse, D. H., Pontau, A. E., Watson, R. D., and Whitley, J. B., Nucl. Instr. Meth. in Physics Res. B23, 527 (1987).CrossRefGoogle Scholar
26Lusin, A. N., in Proc. IV Soviet Conference on the Interaction of Atomic Particles with Solids, Part 2, Charkov, 1976, pp. 115123 (in Russian).Google Scholar