Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T03:07:26.288Z Has data issue: false hasContentIssue false

Characterization of chemical bonding and physical characteristics of diamond-like amorphous carbon and diamond films

Published online by Cambridge University Press:  31 January 2011

Bharat Bhushan
Affiliation:
Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210
Andrew J. Kellock
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Nam-Hee Cho
Affiliation:
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Joel W. Ager III
Affiliation:
Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Get access

Abstract

Diamond-like (amorphous) carbon (DLC) films were prepared by dc magnetron sputtering and plasma enhanced chemical vapor deposition (PECVD) and diamond films were prepared by microwave plasma enhanced chemical vapor deposition (MPECVD). For the first time, chemical and mechanical characterization of the films from each category are carried out systematically and a comparison of the chemical and physical properties is provided. We find that DLC coatings produced by PECVD are superior in microhardness and modulus of elasticity to those produced by sputtering. PECVD films contain a larger fraction of sp3-bonding than the sputtered hydrogenated carbon films. Chemical and physical properties of the diamond films appear to be close to those of bulk diamond.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bhushan, B. and Gupta, B. K., Handbook of Tribology: Materials, Coatings and Surface Treatments (McGraw-Hill, New York, 1991).Google Scholar
2.Tsai, H-C. and Bogy, D. B., J. Vac. Sci. Technol. A5, 32873312 1987).CrossRefGoogle Scholar
3.Khan, M. R., Heiman, N., Fisher, R. D., Smith, S., Smallen, M., Hughes, G. F., Veirs, K., Marchon, B., Ogletree, D. F., Salmeron, M., and Siekhaus, W., IEEE Trans. Magn. 24, 26472649 (1988).CrossRefGoogle Scholar
4.Bhushan, B., Tribology and Mechanics of Magnetic Storage Devices (Springer-Verlag, New York, 1990).CrossRefGoogle Scholar
5.Rubin, M., Hopper, C. B., Cho, N-H., and Bhushan, B., J. Mater. Res. 5, 25382542 (1990).CrossRefGoogle Scholar
6.Spear, K. E., J. Am. Ceram. Soc. 72, 171191 (1989).CrossRefGoogle Scholar
7.Yarbrough, W. A. and Messier, R., Science 247, 688696 (1990).CrossRefGoogle Scholar
8.Angus, J. C. and Hayman, C. C., Science 241, 913921 (1988).CrossRefGoogle Scholar
9.Messier, R., Badzian, T., Spear, K. E., Bachmann, P., and Roy, R., Thin Solid Films 153, 19 (1987).CrossRefGoogle Scholar
10.Weissmantel, C., in Thin Film from Metals, edited by Klabunde, K. J. (Academic Press, New York, 1985), p. 53201.Google Scholar
11.Agarwal, S., IEEE Trans. Mag. MAG-21, 15271529 (1985).CrossRefGoogle Scholar
12.Marchon, B., Salmeron, M., and Siekhaus, W., Phys. Rev. B 39, 1290712910 (1989).CrossRefGoogle Scholar
13.Tsai, H-C., Bogy, D. B., Kundmann, M. K., Veirs, D. K., Hilton, M. R., and Mayer, S. T., J. Vac. Sci. Technol. A6, 23072315 (1988).CrossRefGoogle Scholar
14.Cho, N-H., Kiishnan, K. M., Veirs, D. K., Rubin, M. D., Hopper, C. B., Bhushan, B., and Bogy, D. B., J. Mater. Res. 5, 25432554 (1990).CrossRefGoogle Scholar
15.Cho, N. H., Veirs, D. K., Ager, J. W., Rubin, M. D., Hopper, C. B., and Bogy, D. B., J. Vac. Sci. Technol., submitted for publication (1991).Google Scholar
16.Kawasaki, M., Vandentop, G. J., Salmeron, M., and Somorjai, G. A., Surf. Sci. 227, 261267 (1990).CrossRefGoogle Scholar
17.Vandentop, G. J., Kawasaki, M., Nix, R. M., Brown, I. G., Salmeron, M., and Somorjai, G., Phys. Rev. B 41, 32003210 (1990).CrossRefGoogle Scholar
18.Badzian, A. R., Bachmann, P. K., Hartnett, T., Badzian, T., and Messier, R., Proc. European Research Society Meeting, Paris, France, Les Additions de Physique 14, 6367 (1987).Google Scholar
19.Dillon, R. O., Woollam, J. A., and Katkanant, V., Phys. Rev. B 29, 3482 (1984).CrossRefGoogle Scholar
20.Richter, A., Scheibe, H-J., Pompe, W., Brzezinka, K-W., and Mülhling, I., J. Non-Cryst. Solids 88, 131144 (1986).CrossRefGoogle Scholar
21.L'Ecuyer, J., Brassard, C., Cardinal, C., and Terreault, B., Nucl. Instrum. Methods 149, 271277 (1978).CrossRefGoogle Scholar
22.Doyle, B. L. and Peercy, P. S., Appl. Phys. Lett. 34, 811813 (1979).CrossRefGoogle Scholar
23.Turos, A. and Meyer, O., Nucl. Instrum. Methods in Phys. Res. B 4, 9297 (1984).CrossRefGoogle Scholar
24.Ingram, D. C., McCormick, A. W., Pronko, P. P., Carlson, J. D., and Wollam, J. A., Nucl. Instrum. Methods in Phys. Res. B 6, 430434 (1985).CrossRefGoogle Scholar
25.Dischler, B., Bubenzer, A., and Koidl, P., Appl. Phys. Lett. 42, 636638 (1983).CrossRefGoogle Scholar
26.Beeman, D., Silverman, J., Lynds, R., and Anderson, M. R., Phys. Rev. B 30, 870875 (1984).CrossRefGoogle Scholar
27.Knight, D. S. and White, W. B., J. Mater. Res. 4, 385393 (1989).CrossRefGoogle Scholar
28.Ager, J. W. III, Veirs, D. K., and Rosenblatt, G. M., Phys. Rev. B 43, 64916499 (1991).CrossRefGoogle Scholar