Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T10:13:28.975Z Has data issue: false hasContentIssue false

Characterization of ceramic/TA6V titanium alloy brazed joints

Published online by Cambridge University Press:  31 January 2011

C. Peytour
Affiliation:
Laboratoire de Chimie des Solides, U.A. C.N.R.S. no. 446, Bât 414, Université Paris-Sud, 91405 Orsay Cédex, France
F. Barbier
Affiliation:
Laboratoire de Chimie des Solides, U.A. C.N.R.S. no. 446, Bât 414, Université Paris-Sud, 91405 Orsay Cédex, France
A. Revcolevschi
Affiliation:
Laboratoire de Chimie des Solides, U.A. C.N.R.S. no. 446, Bât 414, Université Paris-Sud, 91405 Orsay Cédex, France
Get access

Abstract

Al2O3 and Si3N4 ceramics were joined to titanium alloy (TA6V) and niobium by active brazing. Chemical reactions between the Cu-40Ag-5Ti braze alloy and these materials were examined, and interfacial reaction products were characterized by scanning electron microscopy and electron probe microanalysis. Results indicate the importance of studying the microstructural features of the joints in order to understand better their effect on the mechanical properties of the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 van Houten, G. R., Ceram. Bull. 38, 301 (1959).Google Scholar
2 Roth, A., Vacuum Sealing Techniques (Pergamon Press, Oxford, 1966), p. 197.Google Scholar
3 Rice, R., Advances in Joining Technology, edited by Burke, J. J. (Brooke Hill, Boston, MA, 1976), p. 69.Google Scholar
4 de Bruin, H. J. and Vander Poorten, H., Silicates Industriels 10, 201 (1981).Google Scholar
5 Nicholas, M. G. and Mortimer, D. A., Mater. Sci. and Tech. 1, 657 (1985).CrossRefGoogle Scholar
6 Borbidge, W.E., Allen, R.V., and Whelan, P.T., J. Phys. Cl-47, 1 (1986).Google Scholar
7 Pask, J. A., Ceram. Bull. 66, 1587 (1987).Google Scholar
8 Nicholas, M. G., Mater. Sci. Forum 29, 127 (1988).CrossRefGoogle Scholar
9 Yan, D. and Blairs, S., IIW Public Sess. Met. Technol. Conf., Sydney, Aust. Weld. Res. Assoc, Milsons Point, N.S.W., Aust., B-9–7, 1 (1976).Google Scholar
10 Naidich, Ju.V., Prog, in Surf, and Membrane Sci. 14, 353 (1981).CrossRefGoogle Scholar
11 Delannay, F., Froyen, L., and Deruyttère, A., J. Mater. Sci. 22, 1 (1987).Google Scholar
12 Bondley, R. J., Electron. 7, 97 (1947).Google Scholar
13 van Esdonk, J. and van Der Sluis, H. H., Brazing and Soldering 5, 22 (1983).Google Scholar
14 Canonico, D. A., Cole, N. C., and Slaughter, G. M., Welding J. 8, 31 (1977).Google Scholar
15 Nicholas, M.G., Valentine, T. M., and Waite, M. J., J. Mater. Sci. 15, 2197 (1980).CrossRefGoogle Scholar
16 Nicholas, M. G., “Joining of Ceramic, Glass and Metal”, Int. Conf., Düsseldorf, DVS-66, 29 (1980).Google Scholar
17 Ballard, O., Meyer, E.A., and Brennan, G.M., Welding J. 10, 37 (1985).Google Scholar
18 Mizuhara, H. and Huebel, E., Welding J. 10, 43 (1986).Google Scholar
19 Moorhead, A. J., Adv. Ceram. Mater. 2, 159 (1987).CrossRefGoogle Scholar
20 Santella, M. L. and Moorhead, A. J., Report Conf.-870981, Oak Ridge National Lab. (1987).Google Scholar
21 Naidich, Yu. V., Zhuravlev, V.S., Chuprina, V. G., and Strashinskaya, L.V., Sov. Powder Metall. and Metal Ceram. 12, 895 (1973).CrossRefGoogle Scholar
22 Tressler, R. E., Moore, T. L., and Crane, R. L., J. Mater. Sci. 8, 151 (1973).CrossRefGoogle Scholar
23 Nicholas, M. G. and Crispin, R. M., “Joining of Ceramic, Glass and Metal”, 2nd Int. Conf., Bad Nauheim, 3 (1985).Google Scholar
24 Ramsey, M. J. and Lewis, M. H., Mater. Sci. Engr. 71, 113 (1985).CrossRefGoogle Scholar
25 Brunner, K., Fischer, M., and Perkins, R. S., “Joining of Ceramic, Glass and Metal”, Int. Conf., Dusseldorf, DVS-66, 37 (1980).Google Scholar
26 Hock, S. and Emmerich, K., “Joining of Ceramic, Glass and Metal”, 2nd Int. Conf., Bad Nauheim, 177 (1985).Google Scholar
27 deCristofaro, N. J. and Datta, A., Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (Elsevier Science Pub., 1985), p. 1715.Google Scholar
28 European Patent 0038584 (1984).Google Scholar
29 French Patent 2556714 (1984).Google Scholar
30 Suganuma, K., Okamoto, T., and Koizumi, M., J. Am. Ceram. Soc. 12, C-256 (1985).Google Scholar
31 Suganuma, K., Okamoto, T., and Koizumi, M., J. Mater. Sci. Lett. 4, 648 (1985).CrossRefGoogle Scholar
32 Barbier, F., Peytour, C., and Revcolevschi, A., submitted for publication to J. Am. Ceram. Soc.Google Scholar
33 Hansen, M. and Anderko, K., Constitution of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958).CrossRefGoogle Scholar
34 Pearson, W. B., A Handbook of Lattice Spacing and Structure of Metals and Alloys (Pergamon Press, New York, 1958).CrossRefGoogle Scholar
35 Murray, J. L., “Monograph Series on Alloy Phase Diagrams: Phase Diagrams of Binary Titanium Alloys”, edited by Murray, J. L. (ASM INTERNATIONAL, Metals Park, OH, 1987), p. 80.Google Scholar
36 Moorhead, A. J., Henson, H. M., and Henson, T. J., Mater. Sci. Res., edited by Pask, J. A. and Evans, A. G. (Plenum Press, 1988), Vol. 21, p. 949.Google Scholar
37 Loehman, R.E. and Tomsia, A. P., Ceram. Bull. 67, 375 (1988).Google Scholar
38 Kivilahti, J. and Heikinheimo, E., “Joining of Ceramic, Glass and Metal”, edited by Kraft, W., DGM, 3rd Int. Conf., Bad Nauheim, 131 (1989).Google Scholar
39 Ishida, Y., Ichinose, H., and Tanaka, S., Mater. Sci. Res., edited by Pask, J. A. and Evans, A. G. (Plenum Press, 1988), Vol. 21, p. 379.Google Scholar