Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T21:19:30.308Z Has data issue: false hasContentIssue false

Characterization of boron nitride thin films prepared from a polymer precursor

Published online by Cambridge University Press:  31 January 2011

V. Z-H. Chan
Affiliation:
Laboratory for Research on the Structure of Matter, and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
J. B. Rothman
Affiliation:
Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104
P. Palladino
Affiliation:
Laboratory for Research on the Structure of Matter, and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
L. G. Sneddon
Affiliation:
Laboratory for Research on the Structure of Matter, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
R. J. Composto
Affiliation:
Laboratory for Research on the Structure of Matter, and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Get access

Abstract

Excellent quality boron nitride (BN) thin films on silicon have been produced by a simple procedure involving spincoating solutions of the “single-source” polymeric-precursor polyborazylene, (B3N3H∼4)x, on a silicon substrate, followed by pyrolysis at 900 °C. Rutherford backscattering spectrometry (RBS) indicates that the B/N ratios are 1.37 and 1.09 for conversions carried out in a vacuum oven at 900 and 1250 °C, respectively. Forward recoil spectrometry (FRES) showed that the atomic percent of residual hydrogen is 10 and 9%, respectively. Plain-view and cross-sectional scanning electron microscopy (SEM) studies showed that the samples annealed at 900 °C were clean and uniform in thickness. A thickness of 800 × 1015 atoms/cm2 was determined by ion scattering. Films annealed to 1250 °C likewise showed a continuous unbroken boron nitride layer, but also exhibited morphological features resulting from reactions of the underlying silicon oxide-silicon interface in the substrate. Auger electron spectroscopy and atomic force microscopy showed that the BN coating produced at this higher temperature remained unbroken but had a surface area of ∼15% covered by dimples 2–7 nm in depth. Compared to typical films made by chemical vapor deposition, BN films produced from this “single-source” method have lower hydrogen and carbon concentrations.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Paine, R. T. and Narula, C. K., Chem. Rev. 90, 73 (1990).CrossRefGoogle Scholar
2.Dana, S. S. and Maldonado, J.R., J. Vac. Sci. Technol. B 4, 235 (1986).CrossRefGoogle Scholar
3.Hanigofsky, J. A., More, K.L., Lackey, W.J., Lee, W.Y., and Freeman, G.B., J. Am. Ceram. Soc. 74, 301 (1991).CrossRefGoogle Scholar
4.Kouvetakis, J., Patel, V. V., Miller, C. W., and Beach, D. B., J. Vac. Sci. Technol. A 8, 3929 (1990).CrossRefGoogle Scholar
5.Patibandla, N. and Luthra, K. L., J. Electrochem. Soc. 139, 3558 (1992).CrossRefGoogle Scholar
6.Middleman, S., Mater. Sci. Eng. A163, 135 (1993).CrossRefGoogle Scholar
7.Nguyen, S. V., Nguyen, T., Treichel, H., and Spindler, O., J. Electrochem. Soc. 141, 1633 (1994).CrossRefGoogle Scholar
8.Smeets, J., Van Den Bergh, V., Meneve, J., Dekempeneer, E., and De, L.Wilde, Thin Solid Films 228, 272 (1993).CrossRefGoogle Scholar
9.Smirnova, T. P., Jakovkina, L. V., Jashkin, I. L., Sysoeva, N. P., and Amosov, J. I., Thin Solid Films 237, 32 (1994).CrossRefGoogle Scholar
10.Fazen, P. J., Beck, J.S., Lynch, A.T., Remsen, E.E., and Sneddon, L.G., Chem. Mater. 2, 96 (1990).CrossRefGoogle Scholar
11.Fazen, P. J., Remsen, E. E., Beck, J. S., Carroll, P. J., McGhie, A. R., and Sneddon, L. G., Chem. Mater. 7, 1942 (1995).CrossRefGoogle Scholar
12.Wideman, T. and Sneddon, L.G., Inorg. Chem. 34, 1002 (1995).CrossRefGoogle Scholar
13.Doolittle, L. R., Nucl. Instrum. Methods B 9, 344 (1985).CrossRefGoogle Scholar
14.McIntyre, L. C. Jr., Leavitt, J. A., Ashbaugh, M. D., Lin, Z., and Stoner, J. O. Jr., Nucl. Instrum. Methods B 64, 457 (1992).CrossRefGoogle Scholar
15.Wynne, K. J. and Rice, R. W., Ann. Rev. Mater. Sci. 14, 297 (1984).CrossRefGoogle Scholar
16.Baney, R. H., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D. R. (John Wiley, New York, 1984).Google Scholar
17.Kim, D-P. and Economy, J., Chem. Mater. 5, 1216 (1993).CrossRefGoogle Scholar
18.Kim, D-P. and Economy, J., J. Ceram. Trans. 38, 47 (1993).Google Scholar
19.Kim, D. and Economy, J., Chem. Mater. 6, 395 (1994).CrossRefGoogle Scholar
20.Ren, S. L., Rao, A.M., Eklund, P.C., and Doll, G.L., Appl. Phys. Lett. 62, 1760 (1993).CrossRefGoogle Scholar
21.Riviere, J. P., Pacaud, Y., and Cahoreau, M., Thin Solid Films 227, 44 (1993).CrossRefGoogle Scholar
22.Ballal, A. K., Salamanca-Riba, L., Taylor, C. A. II, and Doll, G. L., Thin Solid Films 224, 46 (1993).CrossRefGoogle Scholar
23.Duncan, T. M., Levy, R.A., Gallagher, P. K., and Walsh, M. W. Jr., J. Appl. Phys. 64, 2990 (1988).CrossRefGoogle Scholar
24.Friedmann, T. A., McCarty, K.F., Klaus, E.J., Boehme, D., Clift, W. M., Johnsen, H. A., Mills, M. J., and Ottesen, D. K., Appl. Phys. Lett. 61, 2406 (1992).CrossRefGoogle Scholar
25.Baglin, J. E. E., Kellock, A. J., Crockett, M. A., and Shih, A. H., Nucl. Instrum. Methods B 64, 469 (1992).CrossRefGoogle Scholar
26.Gorbatkin, S. M., Burgie, R.F., Oliver, W.C., Barbour, J. C., Mayer, T. M., and Thomas, M.L., J. Vac. Sci. Technol. A 11, 1863 (1993).CrossRefGoogle Scholar
27.Levy, R. A., Resnick, D. J., Frye, R.C., Yanof, A. W., Wells, G. M., and Cerrina, F., J. Vac. Sci. Technol. B 6, 154 (1988).CrossRefGoogle Scholar
28.Swartzentruber, B. S., Mo, Y. W., Webb, M. B., and Lagally, M. G., J. Vac. Sci. Technol. A 7, 2901 (1989).CrossRefGoogle Scholar
29.Davis, L. E., MacDonald, N.C., Palmberg, P.W., Riach, G.E., and Weber, R. E., Handbook of AES, 2nd ed. (Perkin-Elmer Corporation, Eden Prairie, MN, 1978).Google Scholar