Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:45:23.916Z Has data issue: false hasContentIssue false

Characterization of a new Ca–Cd hydroxide hydrothermally synthesized and its implications for cement isolation of Cd

Published online by Cambridge University Press:  31 January 2011

S. Gñni
Affiliation:
Institute of Construction Science Eduardo Torroja CSIC, c) Serrano Galvache s/n, 28033 Madrid, Spain
A. Macías
Affiliation:
Institute of Construction Science Eduardo Torroja CSIC, c) Serrano Galvache s/n, 28033 Madrid, Spain
J. Madrid
Affiliation:
Institute of Construction Science Eduardo Torroja CSIC, c) Serrano Galvache s/n, 28033 Madrid, Spain
J. M. Díez
Affiliation:
Institute of Construction Science Eduardo Torroja CSIC, c) Serrano Galvache s/n, 28033 Madrid, Spain
Get access

Extract

Mixtures of CaO–CdO (1 : 1) were hydrothermally treated in a pressure reactor at 200 °C and 200 psi of pressure during a period of 16 h. The evolution of the reaction was followed by x-ray diffraction (XRD), infrared spectroscopy (IR), and thermogravimetric (TG and DTG) analysis. Also, the composition of the filtered solutions was analyzed to determine the mechanism of the reaction as well as the thermodynamic solubility constant of the new compound formed. The results show that CaO and CdO react, giving rise to a new CaCd(OH)4 hydroxide whose thermodynamic solubility constant, 1.5 ± 0.4 × 10−11 M2, is six orders of magnitude lower than those of both Ca(OH) 2 and β–Cd(OH) 2. This low solubility constant justifies the Cd2+ concentration measured in the pore solution of cement matrices used to immobilize cadmium containing wastes. The mechanism of the reaction proposed is via dissolution of both Ca(OH) 2 and β–Cd(OH)2, Ca2+ and being the predominant species in solution.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Conner, J. R., Chemical Fixation Solidification of Hazardous Wastes (Van Nostrand Reinhold, New York, 1990).Google Scholar
2.Macphee, D. E. and Glasser, F. P., Mater. Res. Soc. Bull. XVIII, 6671 (1993).CrossRefGoogle Scholar
3.Elinders, C. G., Int. J. Environ. Stud. 19 (3–49), 187193 (1982).CrossRefGoogle Scholar
4.Akhter, H., Butler, L. G., Branz, S., Cartledge, F. K., and Tittlebaum, M. E., J. Hazardous Mater. 24, 145155 (1990).CrossRefGoogle Scholar
5.Lee, C-H., Wang, H-C., Lin, C-M., and Yang, G. C. C., J. Hazardous Mater. 38, 6574 (1994).CrossRefGoogle Scholar
6.Tamás, F. D., Csetényi, L., and Tritthart, J., Cem. Concr. Res. 22, 399404 (1992).CrossRefGoogle Scholar
7.Diéz, J. M., Madrid, J., and Macías, A., Cem. Concr. Res. 27 (3), 337343 (1997).CrossRefGoogle Scholar
8.Madrid, J., Díez, J. M., Goñi, S., and Macías, A., Durability of Cement Matrices Used for Stabilization of Hazardous Wastes, Fourth CANMET/ACI International Conference on Durability of Concrete, Sydney, Australia, August 17–22, 1997.Google Scholar
9.Bishop, P. L., Hazardous Waste Hazardous Mater. 5 (2), 129143 (1988).CrossRefGoogle Scholar
10.Cartledge, F. K., Butler, L. G., Chalasani, D., Eaton, H. C., Frey, F. P., Herrera, E., Tittlebaum, M. E., and Yang, S-L., Environ. Sci. Technol. 24, 867873 (1990).CrossRefGoogle Scholar
11.Tumidajski, P. J. and Thomson, M. L., Cem. Concr. Res. 25 (8), 16791690 (1995).CrossRefGoogle Scholar
12.Herrera, E., Tittlebaum, M., Cartledge, F., and Eaton, H., J. Environ. Sci. Health A27 (4), 983998 (1992).Google Scholar
13.Mollah, A., Vempati, R. K., Lin, T., and Cocke, D. L., Waste Management 15 (4), 312 (1995).Google Scholar
14.Yousuf, M., Mollah, A., Tsai, Y. N., and Cocke, D. L., J. Environ. Sci. Health A27 (5), 12131227 (1992).Google Scholar
15.Ryan, D. E., Dean, J. R., and Cassidy, R. M., Can. J. Chem. 43, 999 (1965).CrossRefGoogle Scholar