Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T18:03:59.010Z Has data issue: false hasContentIssue false

Characterization and Optical Investigation of Diamondlike Carbon Prepared by Electron Cyclotron Resonance Plasma

Published online by Cambridge University Press:  31 January 2011

Xiao-Ming He
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
S-T. Lee
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
I. Bello
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
A. C. Cheung
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
W. Z. Li
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
D. S. Chiu
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Y. W. Lam
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
C. S. Lee
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
K. M. Leung
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
X. T. Zhou
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Get access

Abstract

Diamondlike carbon (DLC) films have been prepared on radio-frequency (rf) biased substrates maintained at low temperature (∼60 °C) using electron cyclotron resonance CH4 –Ar plasma. The structures of the resultant films were characterized by Fourier transform infrared (FTIR), Raman, and ultraviolet/visible (UV/VIS) spectrometry. The studies revealed that the deposited structures were DLC films with sp3/sp2 bond hybridization, extremely high hardness (>3000 kgf/mm2), and high electrical resistivity (up to 1014 Ω cm). The DLC films deposited on colorless (transparent) polymer plastics were examined to determine visible light transparencies and optical bandgaps. The results indicate that electron cyclotron resonance (ECR) plasma processing with low negative rf bias, low deposition temperature, and suitable CH4/Ar gas composition can form optically visible light transparent and hard protective DLC films on polymer plastic surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsai, H. and Bogy, D., J. Vac. Sci. Technol. A 5, 3287 (1987).CrossRefGoogle Scholar
2.He, X., Li, W., and Li, H., J. Vac. Sci. Technol. A 14 (4), 2039 (1996).Google Scholar
3.Ono, A., Baba, T., Funamoto, H., and Nishikawa, A., Jpn. J. Appl. Phys. 25, L808 (1986).Google Scholar
4.Dischler, B., Bubenzer, A., and Koidl, P., Appl. Phys. Lett. 42, 636638 (1983).Google Scholar
5.Kimock, F. M. and Knapp, B. J., Surf. Coat. Technol. 56, 273 (1993).CrossRefGoogle Scholar
6.Vora, H. and Moravec, T. J., J. Appl. Phys. 52, 6151 (1981).Google Scholar
7.Vandentop, G. J., Kawasaki, M., Nix, R. M., Brown, I. G., Salmeron, M., and Somorjai, G.A., Phys. Rev. B 41, 3200 (1990).CrossRefGoogle Scholar
8.Weissmantel, C., Bewilogua, K., Schurer, C., Breuer, K., and Zscheile, H., Thin Solid Films 61, L1 (1979).Google Scholar
9.He, X., Li, W., and Li, H., J. Vac. Sci. Technol. A 11 (6), 2964 (1993).Google Scholar
10.Savvides, N., J. Appl. Phys. 59, 4133 (1986).Google Scholar
11.Andry, P. S., Pastel, P. W., and Varhue, W. J., J. Mater. Res. 11, 221 (1996).CrossRefGoogle Scholar
12.Nagai, I., Ishitani, A., Kuroda, H., Yoshikawa, M., and Nagai, N., J. Appl. Phys. 67 (6), 2890 (1990).Google Scholar
13.Kuo, S. C., Kunhardt, E. E., and Srivatsa, A.R., Appl. Phys. Lett. 59 (20), 2532 (1991).Google Scholar
14.Park, K. C., Moon, J. H., Jang, J., and Oh, M. H., Appl. Phys. Lett. 68 (25), 3594 (1996).Google Scholar
15.Pastel, P. W. and Varhue, W. J., J. Vac. Sci. Technol. A 9 (3), 1129 (1991).Google Scholar
16.Dusek, V., Vanecek, M., Siroky, P., and Vorlicek, V., Diamond and Related Materials 2, 397 (1993).CrossRefGoogle Scholar
17.Maruyama, K., Inoun, T., Yamamoto, M., Morinaga, T., Saitoh, H., and Kamata, K., J. Mater. Sci. Lett. 13, 1793 (1994).CrossRefGoogle Scholar
18.Kamata, K., Inoue, T., Sugai, K.I., Asitoh, H., and Maruyama, K., J. Appl. Phys. 78 (2), 1394 (1995).CrossRefGoogle Scholar
19.Angus, J. C. and Hayman, C.C., Science 241, 913 (1988).Google Scholar
20.McKenzie, D.R., Botten, L. C., and Mc, R. C.Phedran, Phys. Rev. Lett. 51, 280 (1983).Google Scholar
21.Mutsukura, N., Inoue, S., and Machi, Y., J. Appl. Phys. 71, 43 (1992).Google Scholar
22.Silva, S.R. P., Amaratunga, G. A. J., and Constantinou, C. P., J. Appl. Phys. 72 (3), 1149 (1992).Google Scholar
23.Rossi, F., André, B., Veen, A. V., Mijnarends, P. E., Schut, H., Labohm, F., Dunlop, H., Delplancke, M.P., and Hubbard, K., J. Mater. Res. 9, 2440 (1994).Google Scholar
24.Beeman, D., Silverman, J., Lynds, R., and Anderson, M. R., Phys. Rev. B 30, 870 (1984).Google Scholar
25.Richter, A., Scheibe, H-J., Pompe, W., Brzezinka, K-W., and Muhling, I., J. Non-Cryst. Solids 88, 131 (1986).Google Scholar
26.Palshin, V., Meletis, E. I., Ves, S., and Logothetidis, S., Thin Solid Films 270, 165 (1995).Google Scholar
27.Kaukonen, H-P. and Nieminen, R. M., Phys. Rev. Lett. 68, 620 (1992).Google Scholar
28.Tamor, M. A. and Wu, C. H., J. Appl. Phys. 67, 1007 (1990).Google Scholar
29.Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Phys. Rev. Lett. 62 (11), 1290 (1989).Google Scholar
30.Xu, Shi, Tay, B.K., Tan, H. S., Zhong, Li, Tu, Y.Q., Silva, S. R. P., and Milne, W. I., J. Appl. Phys. 79 (9), 7234 (1996).Google Scholar
31.Zhang, W. and Catherine, Y., Surf. Coat. Technol. 47, 69 (1991).CrossRefGoogle Scholar
32.Silva, S.R. P., Robertson, J., Rusli, , Amaratunga, G.A. J., and Schwan, J., Philos. Mag. B 74, 369 (1996).Google Scholar
33.Robertson, J., Diamond Relat. Mater. 1, 397 (1992).Google Scholar
34.Robertson, J., Surf. Coat. Technol. 50, 185 (1992).CrossRefGoogle Scholar
35.Morosanu, C.O., Stoica, T., De Mortino, C., Demichelis, F., and Tagliaferro, A., Diamond Relat. Mater. 3, 814 (1994).Google Scholar
36.He, X.M., Li, H. D., Liu, C.H., and Li, W. Z., J. Mater. Proc. Technol. 63 (1–3), 902 (1997).Google Scholar