Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T22:54:44.287Z Has data issue: false hasContentIssue false

Characteristics of TlBa2Ca2Cu3O9+δ powder as-synthesized and after grinding

Published online by Cambridge University Press:  31 January 2011

P.J. Kung
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M.P. Maley
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P.G. Wahlbeck
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D.E. Peterson
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Crystal structure and superconductivity of the Tl–Ba–Ca–Cu–O powder prepared by a solid-state reaction were studied. The results of x-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses indicate that the powder of a major single 1223 phase was synthesized with a cauliflower-like morphology; by grinding, the powder was partially transformed to an amorphous phase. The measurement of magnetic hysteresis was also performed in the temperature range of 7–75 K up to 5 T from which the weak field-dependent behavior of critical current density was observed. The as-synthesized powder, with Tc = 110 K measured from magnetometer and susceptometer, is considered to consist of weak-linked regions. The results obtained from comparing the as-synthesized and the ground powder imply that in the Tl-1223 system, the Ag-sheathed tapes fabricated by the powder-in-tube process may be benefited by forming other intermediate phases with plate-like morphologies to give better densification or grain alignment.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kim, D.H., Gray, K.E., Kampwirth, R.T., Smith, J. C., Richeson, D.S., Marks, T. J., Kang, J. H., Talvacchio, J., and Eddy, M., Physica C 177, 431 (1991).CrossRefGoogle Scholar
2Sasaoka, T., Nomoto, A., Seido, M., Doi, T., and Kamo, T., Jpn. J. Appl. Phys. 30, L1868 (1991).Google Scholar
3Kung, P. J., Maley, M. P., Coulter, J. Y., Willis, J. O., Peterson, D. E., McHenry, M. E., and Wahlbeck, P. G., in Proc. of 1992 TcSUHHTS Workshop on Materials, Bulk Processing, and Bulk Applications (World Scientific, Singapore, in press).Google Scholar
4Aihara, K., Okada, M., Matsumoto, T., Matsuda, S., Hosono, F., and Seido, M., IEEE Trans. Magn. 27, 894 (1991).CrossRefGoogle Scholar
5Li, S. and Greenblatt, M., Physica C 157, 365 (1989).CrossRefGoogle Scholar
6Inoue, O., Adachi, S., and Kawashima, S., Jpn. J. Appl. Phys. 28, L1167 (1989).Google Scholar
7Kirschner, I., Lappavuori, S., Laiho, R., Caplin, A. D., Halasz, I., Porjesz, T., Uusimaki, A., Zsolt, G., Lahderanta, E., Karman, T., Laverty, J., and Kovacs, G., Cryogenics 31, 33 (1991).CrossRefGoogle Scholar
8Doi, T., Okada, M., Soeta, A., Yuasa, T., Aihara, K., Kamo, T., and Matsuda, S-P., Physica C 183, 67 (1991).CrossRefGoogle Scholar
9Kanai, T. , Kamo, T., and Matsuda, Shin-Pei, Jpn. J. Appl. Phys. 29, L412 (1990).Google Scholar
10Takei, H., Koike, M., Takeya, H., Suzuki, K., and Ichihara, M., Jpn. J. Appl. Phys. 28 , L1193 (1989).Google Scholar
11Matsumoto, T., Okada, M., Nisikawa, R., Kamo, T., Aihara, K., Matsuda, S., Seido, M., Ozawa, K., Morii, Y., and Funahashi, S., in Proc. of 3rd Int. Symp. on Superconductivity, Sendai (Springer-Verlag, Tokyo, 1991), p. 619.Google Scholar
12Seido, M., Hosono, F., Umezawa, T., Nomoto, A., Nomura, K., and Matsumoto, T., in Proc. of 2nd Int. Symp. on Superconductivity, Tsukuba (Springer-Verlag, Tokyo, 1990), p. 401.Google Scholar
13Peterson, D.E., Wahlbeck, P.G., Maley, M.P., Willis, J.O., Kung, P.J., Coulter, J.Y., Salazar, K.V., Phillips, D.S., Bingert, J.F., Peterson, E. J., and Hults, W.L., Physica C 199, 161 (1992).CrossRefGoogle Scholar
14Sugise, R., Hirabayashi, M., Terada, N., Jo, M., Shimomura, T., and Ihara, H., Jpn. J. Appl. Phys. 27, L1709 (1988).Google Scholar
15Parkin, S.S.P., Lee, V.Y., Nazzal, A.I., Savoy, R., Beyers, R., and LaPlaca, S.J., Phys. Rev. Lett. 61, 750 (1988).CrossRefGoogle Scholar
16Bean, C.P., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
17Beasley, M.R., Labusch, R., and Webb, W.W., Phys. Rev. 181, 682 (1969).CrossRefGoogle Scholar
18Ishida, T. and Mazaki, H., Phys. Rev. B 20, 131 (1979).Google Scholar
19Mazaki, H., Takano, M., Kanno, R., and Takeda, Y., Jpn. J. Appl. Phys. 26, L780 (1987).Google Scholar