Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:33:51.712Z Has data issue: false hasContentIssue false

Characteristics of thin film transistors fabricated employing various sequential lateral solidification poly-Si microstructures

Published online by Cambridge University Press:  03 March 2011

Ji-Yong Park
Affiliation:
Technology Development Team 1, Corporate R&D Center, Samsung SDI Co., Ltd., 428-5, Gongse-Ri, Kiheung-Eup, Yongin-City, Gyeonggi-Do, 449-902, Korea, Korea
Hye-Hyang Park
Affiliation:
Technology Development Team 1, Corporate R&D Center, Samsung SDI Co., Ltd., 428-5, Gongse-Ri, Kiheung-Eup, Yongin-City, Gyeonggi-Do, 449-902, Korea, Korea
Ki-Yong Lee
Affiliation:
Technology Development Team 1, Corporate R&D Center, Samsung SDI Co., Ltd., 428-5, Gongse-Ri, Kiheung-Eup, Yongin-City, Gyeonggi-Do, 449-902, Korea, Korea
Ho-Kyoon Chung
Affiliation:
Technology Development Team 1, Corporate R&D Center, Samsung SDI Co., Ltd., 428-5, Gongse-Ri, Kiheung-Eup, Yongin-City, Gyeonggi-Do, 449-902, Korea, Korea
Get access

Abstract

Sequential lateral solidification (SLS) is known to be a promising method to make low-temperature poly-Si thin film transistors (LTPS TFTs) with superior performance for fabrication of highly circuit-integrated flat panel displays such as TFT liquid crystal display and TFT organic light-emitting diode. The dependence of TFT characteristics on the details of the SLS poly-Si microstructures was studied by varying the size, direction, and shape of the grains by applying different SLS crystallization mask patterns and processing details. The TFTs results demonstrated that various device properties and characteristics are obtained depending on the specifics of the microstructures. Nearly direction-insensitive TFTs of mobility about 300 cm2/V·s (within 5% variation of average value) were successfully fabricated by controlling the microstructures. Such a characteristic is recognized as being desirable for an optimal integration of the peripheral circuits.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ibaraki, N.Direct-view AMLCDS, edited by Morreale, Jay (SID 99 Digest Proc. 30, San Jose, CA, 1999) p. 172.Google Scholar
2Nishibe, T.: Eurodisplay 2002 269 (2002).Google Scholar
3Brotherton, S.D., McCulloch, D.J., Clegg, J.B. and Gowers, J.P.IEEE Trans. Electron. Devices 40 407 (1993).CrossRefGoogle Scholar
4Hatano, M. and Sjiba, T.Low Temperature Poly-Si, edited by Morreale, Jay (SID 02 Digest, Proc. 33, Boston, MA, 2002) p. 158.Google Scholar
5Dassow, R., Kohler, J.R., Grauvogl, M., Bergmann, R.B. and Werner, J.H.: Solid State Phenom. 67–68 193 (1999).Google Scholar
6Takeuch, F., Takei, M., Hotta, K., Yoshino, K., Suga, K., Hara, A., and Sasaki, N., (AM-LCD 01, Proc. Tokyo, Japan, 2001) p. 251.Google Scholar
7Hara, A., Takeuchi, F., Takei, M., Suga, K., Chida, M., Sano, Y., and Sasaki, N., (AMLCD 02, Proc. Tokyo, Japan, 2002) p. 227.Google Scholar
8Sposili, R.S. and Im, J.S.: Appl. Phys. Lett. 69 2864 (1996).Google Scholar
9Im, J.S. and Sposili, R.S.: MRS Bull. 21 39 (1996).Google Scholar
10Im, J.S., Crowder, M.A., Sposili, R.S., Leonard, J.P., Kim, H.J., Yoon, J.H., Gupta, V.V., Song, H.J. and Cho, H.S.: Phys. Status Solidi 166 603 (1998).Google Scholar
11Brotherton, S.D., Crowder, M.A., Limanov, A.B., Turk, B. and Im, J.S. (Asia Display/IDW 01, Proc. Nagoya, Japan, 2001) p. 387.Google Scholar
12Takaoka, H., Sato, Y., Suzuki, T., Sasaki, T., Tanabe, H. and Hayama, H. (Asia Display/IDW 01, Proc Nagoya, Japan, 2001) p. 395.Google Scholar
13Jung, Y.H., Yoon, J.M., Yang, M.S., Park, W.K. and Soh, H.S.Electron-Emissive Materials, Vacuum Microelectronics and Flat-Panel Displays, edited by Jensen, K.L., Nemanich, R.J., Holloway, P., Trottier, T., Mackie, W., Temple, D., and Itoh, J. (Mater. Res. Soc. Symp. Proc. 621, Warrendale, PA 2001) p. Q9.14.1.Google Scholar
14Thompson, M.O., Calvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G. and Chew, N.G.: Phys. Rev. Lett. 32 2360 (1984).Google Scholar
15Peercy, P.S., Thompson, M.O. and Tsao, J.Y. in Beam-Solid Interactions and Transient Processing, edited by Thompson, M.O., Picraux, S.T., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA 1987) p. 15.Google Scholar
16Im, J.S. and Kim, H.J.: Appl. Phys. Lett. 64 2303 (1994).Google Scholar
17Kim, H.J. and Im, J.S.: Appl. Phys. Lett. 68 1513 (1996).CrossRefGoogle Scholar
18Seto, J.Y.W.: J. Appl. Phys. 46 5247 (1975).Google Scholar
19Kamins, T.I.Polycrystalline Silicon for Integrated Circuit Applications (Kluwer Academic, Boston, 1988).CrossRefGoogle Scholar