Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T03:51:46.852Z Has data issue: false hasContentIssue false

Change of thermal expansion coefficient and electrical conductivity of LaCo1xMxO3 (M = Fe, Ni)

Published online by Cambridge University Press:  03 March 2011

H. Nagamoto*
Affiliation:
Department of Chemical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
I. Mochida
Affiliation:
Department of Chemical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
K. Kagotani
Affiliation:
Department of Chemical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
H. Inoue
Affiliation:
Department of Chemical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
A. Negishi
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

The thermal expansion coefficient of LaCo1−xFexO3 averaging between 25 and 1000 °C decreased linearly with the Fe content, x. The thermal expansion of LaCo1−xNixO3 decreased with increasing the Ni content, but those for x = 0.67 and 1.0 were almost identical at 1000 °C due to the transition of the crystal system of LaNiO3. The behavior of thermal expansion was interpreted in terms of the formation enthalpy of the perovskites and the bond length between a B-site cation and an oxide anion. LaCo0.67Ni0.33O3, which has the electrical conductivity of 4 × 102 S/cm, could be a good candidate for the air electrode material.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lin, Y. S., de Haart, L. G. J., de Vries, K. J., and Burggraaf, A. J., J. Electrochem. Soc. 137, 3960 (1990).Google Scholar
2Mizusaki, J., Tagawa, H., Tsuneyoshi, K., and Sawata, A., J. Electiochem. Soc. 138, 1867 (1991).CrossRefGoogle Scholar
3Kertesz, M., Riess, I., Tannhauser, D. S., Langpape, R., and Rohr, F. J., J. Solid State Chem. 42, 125 (1982).Google Scholar
4Kourtakis, K., Robbins, M., and Gallagher, P. K., J. Solid State Chem. 82, 290 (1989).Google Scholar
5Dee, D. W., Claar, T. D., Easier, T. E., Fee, D. C., and Mrazek, F. C., J. Electrochem. Soc. 134, 2141 (1987).Google Scholar
6Sasaki, H., Suzuki, M., Otoshi, S., Kajimura, A., and Ipponmatsu, M., J. Electrochem. Soc. 139, L12 (1992).Google Scholar
7Yamazaki, Y., Namikawa, T., and Michibata, H., Proc. 2nd Int. Symp. on SOFC 175 (1991).Google Scholar
8Groupp, L. and Anderson, H. U., J. Am. Ceram. Soc. 59, 449 (1976).CrossRefGoogle Scholar
9Chick, L. A., Pederson, L. R., Maupin, G. D., Bates, J. L., Thomas, L. E., and Exarhos, G. J., Mater. Lett. 10, 6 (1990).CrossRefGoogle Scholar
10Sakai, N., Kawada, T., Yokokawa, H., Dokiya, M., and Iwata, T., J. Mater. Sci. 25, 4531 (1990).Google Scholar
11van Santen, H. and Jonker, G. H., Physica 16, 599 (1950).CrossRefGoogle Scholar
12Slilomsak, S., Schilling, D. P., and Anderson, H. U., Proc. 1st Int. Symp. on SOFC 129 (1989).Google Scholar
13Obayashi, H. and Kudo, T., Jpn. J. Appl. Phys. 14, 333 (1975).CrossRefGoogle Scholar
14Ruffa, A. R., J. Mater. Sci. 15, 1990 (1980).Google Scholar
15Yokokawa, H., Kawada, T., and Dokiya, M., J. Am. Ceram. Soc. 72, 152 (1989).CrossRefGoogle Scholar
16Shannon, R. D., Acta Crystallogr. A 32, 751 (1976).Google Scholar
17Obayashi, H., Kudo, T., and Gejo, T., Jpn. J. Appl. Phys. 3, 1 (1975).CrossRefGoogle Scholar
18Raccah, P. M. and Goodenough, J. B., Phys. Rev. 155, 932 (1967).Google Scholar
19Rao, C. N. R., Parkash, Om, and Ganguly, P., J. Solid State Chem. 15, 186 (1975).CrossRefGoogle Scholar