Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T09:13:14.409Z Has data issue: false hasContentIssue false

Cellular solids studied by x-ray tomography and finite element modeling – a review

Published online by Cambridge University Press:  07 May 2013

Clémence Petit
Affiliation:
INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne, France
Sylvain Meille
Affiliation:
INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne, France
Eric Maire*
Affiliation:
INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This article reviews the use of x-ray computed tomography (XRCT) to investigate the structure and properties of cellular solids. In the first section, the possibilities offered by XRCT are presented. Examples of tomographic images are shown for the three classes of material (polymers, metals, and ceramics). Different characterizations of cellular solids performed thanks to XRCT images are shown: calculation of morphological parameters, in situ and ex situ mechanical tests, and use of the tomographic images to perform finite element (FE) modeling. The second part of the paper presents the existing methods to create the meshes from tomographic images and highlights some interesting results from the FE simulations.

Type
Invited General Review
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, England, 1997), p. 510.CrossRefGoogle Scholar
Maire, E.: X-ray tomography applied to the characterization of highly porous materials. Annu. Rev. Mater. Res. 42, 7.1 (2012).CrossRefGoogle Scholar
Buffière, J.Y., Maire, E., Adrien, J., Masse, J.P., and Boller, E.: In situ experiments with x ray tomography: An attractive tool for experimental mechanics. Exp. Mech. 50, 289 (2010).CrossRefGoogle Scholar
Baruchel, J., Buffière, J.Y., Maire, E., Merle, P., and Peix, G.: X-Ray Tomography in Materials Science (Hermès Science Publications, Paris, France, 2000), p. 204.Google Scholar
Stock, S.R.: Recent advances in x-ray microtomography applied to materials. Int. Mater. Rev. 53, 129 (2008).CrossRefGoogle Scholar
Fischer, F., Lim, G.T., Handge, U.A., and Altstdt, V.: Numerical simulations of mechanical properties of cellular materials using computing tomography analysis. J. Cell. Plast. 45, 441 (2009).CrossRefGoogle Scholar
Youssef, S., Maire, E., and Gaertner, R.: Finite element modeling of the actual structure of cellular material determined by X-ray tomography. Acta Mater. 53, 719 (2005).CrossRefGoogle Scholar
Viot, P., Bernard, D., and Plougonven, E.: Polymeric foam under dynamic loading by the use of the microtomographic technique. J. Mater. Sci. 42, 7202 (2007).CrossRefGoogle Scholar
McDonald, S., Dedreuil-Monet, G., Yao, Y., Alderson, A., and Withers, P.: In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tension. Phys. Status Solidi B 45, 248 (2011).Google Scholar
Burteau, A., N'Guyen, F., Bartout, J.D., Forest, S., Bienvenu, Y., Saberi, S., and Nauman, D.: Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams. Int. J. Solids Struct. 49, 2714 (2012).CrossRefGoogle Scholar
Maire, E., Colombo, P., Adrien, J., Babout, L., and Biasetto, L.: Characterisation of the morphology of cellular ceramics by 3D image processing of X-ray tomography. J. Eur. Ceram. Soc. 27, 1973 (2007).CrossRefGoogle Scholar
Zeschky, J., Goetz-Neuhoeffer, F., Neubauer, J., Jason Lo, S.H., Kummer, B., Scheffler, M., and Greil, P.: Preceramic polymer derived cellular ceramics. Compos. Sci. Technol. 63, 2361 (2003).CrossRefGoogle Scholar
Meille, S., Lombardi, M., Chevalier, J., and Montanaro, L.: Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. J. Eur. Ceram. Soc. 32, 3959 (2012).CrossRefGoogle Scholar
D'Angelo, C., Ortona, A., and Colombo, P.: Finite elements analysis of reticulated ceramics under compression. Acta Mater. 60, 6692 (2012).CrossRefGoogle Scholar
Zhang, L., Ferreira, J.M.F., Olhero, S., Courtois, L., Maire, E., Zhang, T., and Rauhe, J.C.: Modeling the mechanical properties of optimally processed cordierite-mullite-alumina ceramic foams by X-ray computed tomography and finite element analysis. Acta Mater. 60, 4235 (2012).CrossRefGoogle Scholar
Lacroix, D., Chateau, A., Ginebra, M.P., and Planell, J.A.: Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27, 5326 (2006).CrossRefGoogle ScholarPubMed
Renghini, C., Giuliani, A., Mazzoni, S., Brun, F., Larsson, E., Baino, F., and Vitale-Brovarone, C.: Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. J. Eur. Ceram. Soc. DOI: 10.1016/j.jeurceramsoc.2012.10.016.Google Scholar
Okanoue, Y., Ikeuchi, M., Takemasa, R., Tani, T., Matsumoto, T., Sakamoto, M., and Nakasu, M.: Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphate. Arch. Orthop. Trauma Surg. 132, 1603 (2012).CrossRefGoogle Scholar
Gioux, G., McCormack, T.M., and Gibson, L.J.: Failure of aluminum foams under multiaxial loads. Inter. J. Mech. Sci. 42, 1097 (2000).CrossRefGoogle Scholar
Jeon, I., Asahina, T., Kang, K.J., Im, S., and Lu, T.J.: Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography. Mech. Mater. 42, 227 (2010).CrossRefGoogle Scholar
Michailidis, N., Stergioudi, F., Omar, H., Papadopoulos, D., and Tsipas, D.N.: Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading. Colloids Surf., A 382, 124 (2011).CrossRefGoogle Scholar
Veyhl, C., Belova, I.V., Murch, G.E., Oschner, A., and Fiedler, T.: On the mesh dependence of non-linear mechanical finite element analysis. Finite Elem. Anal. Des. 46, 371 (2010).CrossRefGoogle Scholar
Guillén, T., Zhang, Q.H., Tozzi, G., Orhndorf, A., Christ, H.J., and Tong, J.: Compressive behavior of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis. J. Mech. Behav. Biomed. Mater. 4, 1452 (2011).CrossRefGoogle ScholarPubMed
Caty, O., Maire, E., Youssef, S., and Bouchet, R.: Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements. Acta Mater. 56, 5524 (2008).CrossRefGoogle Scholar
Lhuissier, P., Salvo, L., and Bréchet, Y.: Quasistatic mechanical behavior of stainless steel hollow sphere foam: Macroscopic properties and damage mechanisms followed by X-ray tomography. Mater. Lett. 63, 1113 (2009).CrossRefGoogle Scholar
Singh, R., Lee, P.D., Lindley, T.C., Kohlhauser, C., Hellmich, C., Bram, M., Imwinkelried, T., and Dashwood, R.J.: Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling. Acta Biomater. 6, 2342 (2010).CrossRefGoogle ScholarPubMed
Saadatfar, M., Garcia-Moreno, F., Hutzler, S., Sheppard, A.P., Knackestedt, M.A., Banhart, J., and Weaire, D.: Imaging of metallic foams using X-ray micro-CT. Colloids Surf., A 344, 107 (2009).CrossRefGoogle Scholar
Van Bael, S., Kerckhofs, G., Moesen, M., Pyka, G., Schrooten, J., and Kruth, J.P.: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater. Sci. Eng., A 528, 7423 (2011).CrossRefGoogle Scholar
Tariq, F., Haswell, R., Lee, P.D., and McComb, D.W.: Characterization of hierarchical pore structures in ceramics using multiscale tomography. Acta Mater. 59, 2109 (2011).CrossRefGoogle Scholar
IMorph: IMorph [online]. Available on: <www.imorph.com>..>Google Scholar
Brabant, L., Vlassenbroeck, J., De Witte, Y., Cnudde, V., Boone, M.N., Dewanckele, J., and Van Hoorebeke, L.: Three-dimensional analysis of high-resolution X-ray computed tomography data with Morpho+. Microsc. Microanal. 17, 252 (2011).CrossRefGoogle ScholarPubMed
Toda, H., Kobayashi, T., Niimoni, M., Ohgaki, T., Kobayashi, M., Kuroda, M., Akahori, T., Uesugi, K., Makii, K., and Aruga, Y.: Quantitative assessment of microstructure and its effect on compressive behavior of aluminum foams via high resolution synchrotron X-ray tomography. Metall. Mater. Trans. A 37, 1211 (2006).CrossRefGoogle Scholar
Grenestedt, J.L. and Tanaka, K.: Influence of cell shape variations on elastic stiffness of closed cell cellular solids. Scr. Mater. 40, 71 (1999).CrossRefGoogle Scholar
Fleck, N.A., Olurin, O.B., Chen, C., and Ashby, M.F.: The effect of hole size upon the strength of metallic and polymeric foams. J. Mech. Phys. Solids 49, 2015 (2001).CrossRefGoogle Scholar
Maire, E., Fazekas, A., Salvo, L., Dendievel, R., Youssef, S., Cloetens, P., and Létang, J.M.: X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Compos. Sci. Technol. 63, 2431 (2003).CrossRefGoogle Scholar
Berre, C., Fok, S.L., Mummery, P.M., Ali, J., Marsden, B.J., Marrow, T.J., and Neighbour, G.B.: Failure analysis of the effects of porosity in thermally oxidised nuclear graphite using finite element modeling. J. Nucl. Mater. 381, 1 (2008).CrossRefGoogle Scholar
Saadatfar, M., Arns, C.H., Knackstedt, M.A., and Senden, T.: Mechanical and transport properties of polymeric foams derived from 3D images. Colloids Surf., A 263, 284 (2005).CrossRefGoogle Scholar
Garboczi, E.J. and Day, A.R.: An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios. J. Mech. Phys. Solids 43, 349 (1995).CrossRefGoogle Scholar
Arns, C.H., Knackstedt, M.A., Val Pinczewski, W., and Garboczi, E.J.: Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics 67, 1396 (2002).CrossRefGoogle Scholar
Fiedler, T., Hosseini, S.M.H., Belova, I.V., Murch, G.E., and Ochsner, A.: A refined finite element analysis on the thermal conductivity of perforated hollow sphere structures. Comp. Mater. Sci. 47, 314 (2009).CrossRefGoogle Scholar
Roberts, A.P. and Garboczi, E.J.: Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater. 49, 189 (2001).CrossRefGoogle Scholar
Escoda, J., Willot, F., Jeulin, D., Sanahuja, J., and Toulemonde, C.: Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image. Cem. Concr. Res. 41, 542 (2011).CrossRefGoogle Scholar
Elliott, J.A., Windle, A.H., Hobdell, J.R., Eeckhaut, G., Oldman, R.J., Ludwig, W., Boller, E., Cloetens, P., and Baruchel, J.: In-situ deformation of an open-cell flexible polyurethane foam characterized by 3D computed tomography. J. Mater. Sci. 37, 1547 (2002).CrossRefGoogle Scholar
Ulrich, D., Van Rietbergen, B., Weinans, H., and Rüegsegger, P.: Finite element analysis of trabecular bone structure: A comparison of image-based meshing techniques. J. Biomech. 31, 1187 (1998).CrossRefGoogle ScholarPubMed
Vesenjak, M., Veyhl, C., and Fiedler, T.: Analysis of anisotropy and strain rate sensitivity of open-cell metal foam. Mater. Sci. Eng., A 541, 105 (2012).CrossRefGoogle Scholar
Marcadon, V., Davoine, C., Passilly, B., Boivin, D., Popoff, F., Rafray, A., and Kruch, S.: Mechanical behavior of hollow-tube stackings: Experimental characterization and modeling of the role of their constitutive material behavior. Acta Mater. 60, 5626, (2012).CrossRefGoogle Scholar
Sandino, C., Planell, J.A., and Lacroix, D.: A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41, 1005 (2008).CrossRefGoogle ScholarPubMed
Barbier, C., Dendievel, R., and Rodney, D.: Numerical study of 3D-compressions of entangled materials. Comp. Mater. Sci. 45, 593 (2009).CrossRefGoogle Scholar