Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T01:38:53.696Z Has data issue: false hasContentIssue false

CdS-silica xerogel nanocomposites: Processing-induced textural changes

Published online by Cambridge University Press:  03 March 2011

E. Blanco
Affiliation:
Departamento de Estructura y Propiedades de los Materiales, Facultad de Ciencias, Universidad de Cádiz, Spain
R. Litrán
Affiliation:
Departamento de Estructura y Propiedades de los Materiales, Facultad de Ciencias, Universidad de Cádiz, Spain
M. Ramírez-del-Solar
Affiliation:
Departamento de Estructura y Propiedades de los Materiales, Facultad de Ciencias, Universidad de Cádiz, Spain
N. de la Rosa-Fox
Affiliation:
Departamento de Estructura y Propiedades de los Materiales, Facultad de Ciencias, Universidad de Cádiz, Spain
L. Esquivias
Affiliation:
Departamento de Estructura y Propiedades de los Materiales, Facultad de Ciencias, Universidad de Cádiz, Spain
Get access

Abstract

CdS-silica xerogel composites were prepared from tetramethoxysilane, acidic water, and formamide mixtures homogenized by high power ultrasounds. Different concentrations of Cd(NO3)2 were added. CdS semiconductor nanoparticles were precipitated by H2S gas diffusion through the sonogel porous structure. Composite mechanical properties were enhanced by an impregnation process by the gel soaking in the same sol as-prepared. Textural parameters evolution is compared to the salt content in order to find the best performance to CdS nanocrystal growth. The impregnation process allows a better composite protection.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jain, R. K. and Lind, R. C., J. Opt. Soc. Am. 73 (5), 647653 (1983).CrossRefGoogle Scholar
2Yao, S. S., Karaguleff, C., Gabel, A., Fortenberry, R., Scaton, C. T., and Stegeman, G. I., Appl. Phys. Lett. 46, 801 (1985).CrossRefGoogle Scholar
3Hilinski, E. F., Lucas, P. A., and Wang, Y., J. Chem. Phys. 89 (6), 3435 (1988).CrossRefGoogle Scholar
4Shinqjima, H., Yumoto, J., Uesugi, N., Omi, S., and Asahara, Y., Appl. Phys. Lett. 55 (15), 1519 (1989).CrossRefGoogle Scholar
5Éfros, Al. L., and Éfros, A. L., Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
6Brus, L. E., J. Chem. Phys. 80 (9), 4403 (1984).CrossRefGoogle Scholar
7Wang, Y. and Herron, N., J. Phys. Chem. 95, 525 (1991).CrossRefGoogle Scholar
8Blanco, E., de la Rosa-Fox, N., Esquivias, L., and Craievich, A. F., J. Non-Cryst. Solids 147&148, 296302 (1992).CrossRefGoogle Scholar
9PiÉero, M., Ramírez-del-Solar, M., de la Rosa-Fox, N., Litrán, R., Fernández-Lorenzo, C., Esquivias, L., Craievich, A. F., and Zarzycki, J., Sol-Gel Sci. & Tech. (1994, in press).Google Scholar
10Canva, M., Georges, P., Le Saux, G., Braun, A., Larrue, D., and Zarzycki, J., J. Non-Cryst. Solids 147&148, 637 (1992).Google Scholar
11Hench, L. L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley, New York, 1986), p. 52.Google Scholar
12Murakata, T., Shimio, S., Takashi, W., and Tohru, S., J. Mater. Sci. 27, 15671574 (1992).CrossRefGoogle Scholar