Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:31:23.376Z Has data issue: false hasContentIssue false

Carbon effects in rapidly solidified Ni3Al

Published online by Cambridge University Press:  03 March 2011

S. C. Huang
Affiliation:
General Electric Corporate Research and Development, P. O. Box 8, Schenectady, New York 12301
C. L. Briant
Affiliation:
General Electric Corporate Research and Development, P. O. Box 8, Schenectady, New York 12301
K.-M. Chang
Affiliation:
General Electric Corporate Research and Development, P. O. Box 8, Schenectady, New York 12301
A. I. Taub
Affiliation:
General Electric Corporate Research and Development, P. O. Box 8, Schenectady, New York 12301
E. L. Hall
Affiliation:
General Electric Corporate Research and Development, P. O. Box 8, Schenectady, New York 12301
Get access

Abstract

The effect of carbon on the mechanical properties of ordered, face-center-cubic Ni3Al has been studied. It has been found that carbon provides no ductihzation to the intermetallic compound, but exerts a large solid solution strengthening effect. The strengthening rate measured is Δσy/ΔC∼0.5G per atom percent carbon, where G is the Ni3Al shear modulus. Auger analysis and lattice parameter measurements were also carried out. The results are discussed with respect to the nature of carbon in grain boundary regions and in the bulk.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Aoki, K. and Isumi, O., J. Jpn. Inst. Met. 43, 1190 (1979).CrossRefGoogle Scholar
2Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).CrossRefGoogle Scholar
3Taub, A. I., Huang, S. C., and Chang, K. M., Met. Trans. A 15, 399 (1984).CrossRefGoogle Scholar
4Huang, S. C., Taub, A. I., Chang, K. M., Briant, C. L., and Hall, E. L., in Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Elsevier, New York, 1985), p. 1407.Google Scholar
5Messmer, R. P. and Briant, C. L., Acta Metall. 30, 457 (1982).CrossRefGoogle Scholar
6Huang, S. C., Taub, A. I., and Chang, K. M., Acta Metall. 32, 1703 (1984).CrossRefGoogle Scholar
7Rawlings, R. D. and Staton-Bevan, A. E., J. Mater. Sci. 10, 505 (1975).CrossRefGoogle Scholar
8Mott, N. F. and Nabarro, F. R. N., in Report of the Conference on the Strength of Solids (Physical Society, London, 1948), p. 1.Google Scholar
9Guard, R. W. and Westbrook, J. H., Trans. Am. Inst. Min. Engrs. 215, 807 (1959).Google Scholar
10Stadelmaier, H. H. and Fraker, A. C., Metall. 16, 212 (1962).Google Scholar
11Han, K. H. and Choo, W. K., Scripta Metall. 17, 281 (1983).CrossRefGoogle Scholar
12Huang, S. C., Laforce, R. P., Ritter, A. M., and Goehner, R. P., Metall. Trans. A 16, 1773 (1985).CrossRefGoogle Scholar
13Chang, K.-M., Huang, S. C., and Taub, A. I., in Rapidly Solidified Metastable Materials, edited by Kear, B. H. and Giessen, W. C. (North-Holland, New York, 1984), p. 401.Google Scholar
14Koch, C. C., Horton, J. A., Liu, C. T., Cavin, O. B., and Scarbrough, J. O. in Rapid Solidification Processing, Principles and Technologies III, edited by Mehrabian, R. (National Bureau of Standards, Washington, DC, 1983), p. 264.Google Scholar
15Noguchi, O., Oya, Y., Suzuki, T., Metall. Trans. A 12, 1647 (1981).CrossRefGoogle Scholar
16Takasugi, T. and Izumi, O., Acta Metall. 31, 1187 (1983).CrossRefGoogle Scholar
17Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., Scripta Metall. 19, 551 (1985).CrossRefGoogle Scholar
18Briant, C. L. and Banerji, S. K. in Embrittlement of Engineering Alloys, edited by Briant, C. L. and Banerji, S. K. (Academic, New York, 1983), p. 21.CrossRefGoogle Scholar
19Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry (Interscience, New York, 1966), p. 255.Google Scholar
20Mulford, R. A., in Embrittlement of Engineering Alloys, edited by Briant, C. L. and Banerji, S. K. (Academic, New York, 1983), p. 1.Google Scholar
21Briant, C. L. and Messmer, R. P., Acta Metall. 32, 2043 (1984).CrossRefGoogle Scholar
22Mulford, R. A., McMahon, C. J. Jr., Pope, D. P., and Feng, H. C., Metall. Trans. A 7, 1183 (1976).CrossRefGoogle Scholar
23Fleischer, R. L., Acta Metall. 9, 996 (1961).CrossRefGoogle Scholar
24Fleischer, R. L., Acta Metall. 10, 1835 (1962).CrossRefGoogle Scholar
25Flinn, P. A., in Strengthening Mechanisms in Solids (American Society for Metals, Cleveland, 1962), p. 17.Google Scholar
26Inoue, A., Kojima, Y., Minemurand, T., and Masumoto, T., Metall. Trans. A 12, 1245 (1981).CrossRefGoogle Scholar
27Cahn, R. W., Walter, J. L., and Marsh, D. W., to be submitted to Int. J. Rapid Solidification.Google Scholar