Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T19:21:11.482Z Has data issue: false hasContentIssue false

Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters?

Published online by Cambridge University Press:  31 January 2011

Yang-Tse Cheng
Affiliation:
Materials and Processes Laboratory, General Motors Research and Development Center, Warren, Michigan 48090
Che-Min Cheng
Affiliation:
Laboratory for Non-Linear Mechanics of Continuous Media, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
Get access

Abstract

Applying the scaling relationships developed recently for conical indentation in elastic–plastic solids with work-hardening, we examine the question of whether stress–strain relationships of such solids can be uniquely determined by matching the calculated loading and unloading curves with that measured experimentally. We show that there can be multiple stress–strain curves for a given set of loading and unloading curves. Consequently, stress–strain relationships may not be uniquely determined from loading and unloading curves alone using a conical or pyramidal indenter.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tabor, D., The Hardness of Metals (Oxford, London, 1951).Google Scholar
2.Pethica, J.B., Hutchings, R., and Oliver, W.C., Phil. Mag. A48, 593 (1983).CrossRefGoogle Scholar
3.Stone, D., LaFontaine, W.R., Alexopoulos, P., Wu, T.W., and Li, C-Y., J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
4.Doener, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
5.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
6.Cheng, Y-T. and Cheng, C-M., Appl. Phys. Lett. 73, 614 (1998).CrossRefGoogle Scholar
7.Bhattacharya, A.K., and Nix, W.D., Int. J. Solids Structures 24, 881 (1988).CrossRefGoogle Scholar
8.Laursen, T.A., and Simo, J.C., J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
9.Myers, S.M., Knapp, J.A., Follstaedt, D.M. and Dugger, M.T., J. Appl. Phys. 83, 1256 (1998).CrossRefGoogle Scholar
10.Cheng, Y-T. and Cheng, C-M., Int. J. Solids Structures 36, 1231 (1999).CrossRefGoogle Scholar
11.Cheng, Y-T. and Cheng, C-M., J. Appl. Phys. 84, 1284 (1998).CrossRefGoogle Scholar
12.Lubliner, J., Plasticity Theory (Macmillan, New York, 1990).Google Scholar
13.Dieter, G., Mechanical Metallurgy, Second Edition (McGraw-Hill, New York, 1976).Google Scholar
14.ABAQUS, version 5.6 and 5.7, Hibbitt, Karlsson & Sorensen, Inc. (Pawtucket, RI 02860, USA).Google Scholar
15.Cheng, Y-T. and Cheng, C-M., Mag. Lett. 77, 39 (1998).CrossRefGoogle Scholar
16.Loubet, J.L., Georges, J.M., Marchesini, O., and Meille, G., Trans. Am. Soc. Mech. Eng.: J. Tribology 106, 43 (1984).Google Scholar
17.Lichinchi, M., Lenardi, C., Haupt, J., and Vitali, R., Thin Solid Films 312, 240 (1998).CrossRefGoogle Scholar
18.Cheng, Y-T. and Cheng, C-M., J. Mater. Res. 13, 1059 (1998).CrossRefGoogle Scholar