Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T21:15:51.606Z Has data issue: false hasContentIssue false

The calculation of stacking fault energies in close-packed metals

Published online by Cambridge University Press:  31 January 2011

S. Crampin
Affiliation:
The Blackett Laboratory, Imperial College, London, SW7 2BZ United Kingdom
K. Hampel
Affiliation:
The Blackett Laboratory, Imperial College, London, SW7 2BZ United Kingdom
D. D. Vvedensky
Affiliation:
The Blackett Laboratory, Imperial College, London, SW7 2BZ United Kingdom
J. M. MacLaren
Affiliation:
Theoretical Division, MS-B262, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The one-electron theory of metals is applied to the calculation of stacking fault energies in face-centered cubic metals. The extreme difficulties in calculating fault energies of the order of 0.01 eV/(interface unit-cell area) are overcome by applying the Force theorem and using the layer–Korringer–Kohn–Rostoker method to determine the charge density of isolated defects. A simple scheme is presented for accommodating deviations from charge neutrality inherent in this approach. The agreement between theoretical and experimental values for the stacking fault energy is generally good, with contributions localized to within three atomic planes of the fault, but suggest the quoted value for Rh is a significant overestimation.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hirth, J. P. and Lothe, J., Theory of Dislocations (Wiley Interscience, New York, 1982).Google Scholar
2Murr, L. E., Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975).Google Scholar
3Ahlers, M., Metall. Trans. 1, 2415 (1970).CrossRefGoogle Scholar
4Zangwill, A. and Bruinsma, R., Comments Cond. Mater. Phys. 13, 1 (1987).Google Scholar
5Gallagher, P. C. J., Metall. Trans. 1, 2429 (1970).Google Scholar
6Saada, G., in Theory of Crystal Defects, edited by Gruber, B. (Academic Press, New York, 1966).Google Scholar
7 The Suzuki effect; Suzuki, H., Sci. Repts., Tokohu Univ. A 4, 455 (1952); Phys. Soc. (Japan) 17, 322 (1962). See also Ref. 1.Google Scholar
8Temmerman, W. M. and Szotek, Z., Comp. Phys. Rep. 5, 175 (1987).Google Scholar
9 In real materials where the fault is created by the dissociation of partials, the occurrence of any given stacking fault will also depend upon an activation energy.Google Scholar
10Hodges, C. H., Philos. Mag. 15, 371 (1967).Google Scholar
11Simon, J. P., J. Phys. F 9, 425 (1979).CrossRefGoogle Scholar
12Beissner, R. E., Phys. Rev. B 8, 5432 (1973).Google Scholar
13Blandin, A., Friedel, J., and Saada, G., J. Phys. (Paris) 27, C3128 (1966).Google Scholar
14Harrison, E. A., Phys. Status Solidi 19, 487 (1973).Google Scholar
15Chou, M. Y., Cohen, M. L., and Louie, S. G., Phys. Rev. B 32, 7983 (1985).Google Scholar
16MacLaren, J. M., Crampin, S., Vvedensky, D. D., and Eberhart, M. E., Phys. Rev. Lett. 63, 2586 (1989).Google Scholar
17Kohn, W. and Sham, L. J., Phys. Rev. 140, A1130 (1965); P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
18MacLaren, J. M., Crampin, S., Vvedensky, D. D., and Pendry, J. B., Phys. Rev. B 40, 12164 (1989).Google Scholar
19 For example, Needs, R. J. and Mansfield, M. J., J. Phys.: Condens. Matter 1, 7555 (1989).Google Scholar
20Mackintosh, A. R. and Anderson, O. K., in Electrons at the Fermi Surface, edited by Springford, M. (Cambridge University Press, Cambridge, 1980); O. K. Anderson, H. L. Skriver, H. Nohl, and B. Johansson, Pure Appl. Chem. 52, 93 (1979). See also Ref. 21.Google Scholar
21Heine, V., in Solid State Physics, edited by Ehrenreich, H., Seitz, F., and Turnball, D. (Academic Press, New York, 1980), Vol. 35, p. 1.Google Scholar
22Anderson, O. K., Phys. Rev. B 12, 3060 (1975); H. L. Skriver, The LMTO Method (Springer, Berlin, 1984).CrossRefGoogle Scholar
23Skriver, H. L., Phys. Rev. B 31, 1909 (1985); H. L. Skriver, Phys. Rev. Lett. 49, 1768 (1982).CrossRefGoogle Scholar
24 This may also be directly attributed to the use of the frozen potential. See p. 119 of Ref. 21.Google Scholar
25Esposito, E., Carlsson, A. E., Ling, D. D., Ehrenreich, H., and Gelatt, C. D., Philos. Mag. A 41, 251 (1980).CrossRefGoogle Scholar
26Lambrecht, W. R. L. and Segall, B., Phys. Rev. Lett. 61, 1764 (1988).Google Scholar
27McMahan, A. K., Phys. Rev. B 30, 5835 (1984).Google Scholar
28Kambe, K., Z. Natur. 22a, 422 (1967); Z. Natur. 22a, 322 (1967); Z. Natur. 23a, 1280 (1968); Z. Natur. 24c, 1432 (1969).Google Scholar
29Lloyd, P. and Smith, P. V., Adv. Phys. 21, 69 (1972).Google Scholar
30Appelbaum, J. A. and Hamann, D. R., Phys. Rev. B 6, 2166 (1972); N. A. W. Holzwarth and M. J. G. Lee, Phys. Rev. B 18, 5350 (1978); ibid., p. 5365.Google Scholar
31Pendry, J. B., Low Energy Electron Diffraction (Academic Press, London, 1974).Google Scholar
32Cunningham, S. L., Phys. Rev. B 10, 1988 (1974).Google Scholar
33 This is common practice in electronic structure calculations, e.g., Ref. 15.Google Scholar
34Koelling, D. D. and Harmon, B. N., J. Phys. C 10, 3107 (1977).Google Scholar
35Hedin, L. and Lundqvist, B. I., J. Phys. C 4, 2064 (1971).Google Scholar
36Moruzzi, V. L., Janak, J. F., and Williams, A. R., Calculated Electronic Properties of Metals (Pergamon, New York, 1978).Google Scholar
37MacLaren, J. M., Crampin, S., Vvedensky, D. D., Albers, R. C., and Pendry, J. B., to be published in Comp. Phys. Comm. (1990).Google Scholar
38Inman, M. D. and Tipler, H. R., Met. Rev. 8, 105 (1963).Google Scholar
39Gleiter, H. and Klein, H. P., Philos. Mag. 27, 1009 (1973).CrossRefGoogle Scholar
40Dillamore, I. L. and Smallman, R. E., Philos. Mag. 12, 191 (1965).CrossRefGoogle Scholar
41Dillamore, I. L., Smallman, R. E., and Roberts, W. T., Philos. Mag. 9, 517 (1964).CrossRefGoogle Scholar
42Lee, D. H. and Joannopolous, J. D., Phys. Rev. B 23, 4997 (1981).CrossRefGoogle Scholar
43Frank, F. C., Philos. Mag. 42, 1014 (1951).CrossRefGoogle Scholar