Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:41:19.588Z Has data issue: false hasContentIssue false

Bulk Scandium-based Metallic Glasses

Published online by Cambridge University Press:  03 March 2011

X.K. Xi
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
S. Li
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
R.J. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
D.Q. Zhao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
M.X. Pan
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
W.H. Wang*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The novel rare-earth scandium-based bulk metallic glasses (BMGs) are obtained by the copper mold casting method. Compared with other rare-earth BMGs reported so far, the Sc-based BMGs exhibit the highest elastic moduli (e.g., Young’s modulus, E = 85 GPa; bulk modulus, B = 77.5 GPa), glass transition temperature (Tg = 662 K), and crystallization temperature (Tx = 760 K) combined with a large region of supercooled liquid (ΔT = 98 K). A good correlation between glass transition temperature and elastic moduli is found in a variety of rare-earth-based BMGs.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).Google Scholar
2Wei, B.C., Loser, W., Roth, S., Wang, W.H. and Eckert, J.: Anomalous thermal stability of NdFeCoAl bulk metallic glass. Acta Mater. 50, 4357 (2002).CrossRefGoogle Scholar
3Zhao, Z.F. and Wang, W.H.: A highly glass-forming alloy with very low glass transition temperature. Appl. Phys. Lett. 82, 4699 (2003).Google Scholar
4Li, S. and Wang, W.H.: Formation and properties of Dy- and Gd-based bulk metallic glasses. (Unpublished.).Google Scholar
5Guo, F.Q., Poon, S.J. and Shiflet, G.J.: Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83, 2575 (2003).CrossRefGoogle Scholar
6Zhang, B. and Wang, W.H.: “Soft” bulk metallic glasses based on cerium. Appl. Phys. Lett. 85, 61 (2004).Google Scholar
7Wang, Y.T. and Wang, W.H.: Tb nanocrystalline array assembled directly from alloy melt. Appl. Phys. Lett. 85, 5989 (2004).Google Scholar
8Busch, R., Kim, Y.J. and Johnson, W.L.: Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41Ti14Cu12.5Ni10Be22.5 alloy. J. Appl. Phys. 77, 4039 (1995).CrossRefGoogle Scholar
9Egami, T.: Universal criterion for metallic glasses formation. Mater. Sci. Eng. A 226, 261 (1997).Google Scholar
10 http://www.webelements.com.Google Scholar
11Zingg, T., Richmond, T. and Guntherodt, H.J.: Electronic transport properties of glassy Fe–Sc alloys. Mater. Sci. Eng. 99, 179 (1988).CrossRefGoogle Scholar
12Braun, M.F., Scheltz, K.P., Wassermann, E.F. and Ghafari, M.: Relaxation studies of the remnant magnetization in the spin glass like state of amorphous Fe90(ZrxScy)10 alloys. J. Phys. Coll. 49((C-8)), 1165 (1988).Google Scholar
13Vujic, D.R., Lohemeier, D.A. and Whang, S.H.: Occurrence of glassy phases in Sc-Co and Sc-Ni systems. Int. J. Rapid Solid. 5, 277 (1990).Google Scholar
14Wang, W.H., Bian, Z., Wen, P., Zhang, Y. and Zhao, D.Q.: Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 10, 1249 (2002).Google Scholar
15Lu, Z.P. and Liu, C.T.: Role of minor alloying additions in formation of bulk metallic glasses. J. Mater. Sci. 39, 3965 (2004).CrossRefGoogle Scholar
16Wang, W.H., Wang, R.J. and Pan, M.X.: Elastic constants and their pressure dependence of Zr41Ti14Cu12.5Ni9Be22.5C1 bulk metallic glass. Appl. Phys. Lett. 74, 1803 (1999).Google Scholar
17Schreiber, D.: Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973).Google Scholar
18Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
19Lu, Z.P. and Liu, C.T.: Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505 (2003).CrossRefGoogle ScholarPubMed
20Lin, X.H. and Johnson, W.L.: Formation of TiZrCuNi bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
21Wang, W.H., Dong, C. and Shek, S.H.: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).CrossRefGoogle Scholar
22Zhang, Z., Wang, R.J. and Wang, W.H.: Elastic behavior and microstructural characteristics of NdAlFeCo bulk metallic glass investigated by ultrasonic measurement under high pressure. J. Phys.: Condens. Matter 15, 4503 (2003).Google Scholar
23Zhang, B., Wang, R.J. and Wang, W.H.: Properties of Ce-based bulk metallic glass-forming alloys. Phys. Rev. B 70, 224208 (2004).CrossRefGoogle Scholar
24Pampillo, C.A. and Chen, H.S.: Comprehensive plastic deformation of a bulk metallic glass. Mater. Sci. Eng. 13, 181 (1974).Google Scholar
25Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar