Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T07:36:51.071Z Has data issue: false hasContentIssue false

Boron nitride nanotubes filled with zirconium oxide nanorods

Published online by Cambridge University Press:  31 January 2011

Z. Q. Shen
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
L. L. He*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
E. D. Wu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Y. Y. Fan
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
J. F. He
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
H. M. Cheng
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
D. X. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
H. Q. Ye
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Boron nitride nanotubes (BNNTs) filled with zirconium oxide (ZrO2) nanorods were synthesized by the improved solid-gas multiphase reaction method. The structure of ZrO2 nanorods was monoclinic single crystal or multi-twin crystal. The diameters of ZrO2 nanorods varied from 20 to 40 nm. The inner diameters of BNNTs were similar to those of corresponding ZrO2 nanorods. The BNNTs exhibited open end, closed end, or an end connected with a short tube grown from the tip of the ZrO2 nanorod. No preferred orientation was observed for the growth of ZrO2 nanorods.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
2.Ajayan, P.M. and Iijima, S., Nature (London) 361, 333 (1993).CrossRefGoogle Scholar
3.Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature (London) 362, 522 (1993).CrossRefGoogle Scholar
4.Dujardin, E., Ebbesen, T.W., Hiura, H., and Tanigaki, K., Science 265, 1850 (1994).CrossRefGoogle Scholar
5.Tsang, S.C., Chen, Y.K., Harris, P.J.F., and Green, M.L.H., Nature (London) 372, 159 (1994).CrossRefGoogle Scholar
6.Chu, A.Cook, J., Heesom, J.R., Hutchison, J.L., Green, M.L.H., and Sloan, J., Chem. Mater. 8, 2751 (1996).CrossRefGoogle Scholar
7.Sloan, J., Hammer, I., Zwiefka-Sibley, M., and Green, M.L.H., J. Chem. Soc., Chem. Commun. 3, 347 (1998).CrossRefGoogle Scholar
8.Ruoff, R.S., Lorents, D.C., Chan, B., Malhota, R., and Subramoney, S., Science 259, 346 (1993).CrossRefGoogle Scholar
9.Guerret-Pie´court, C., Bouar, Y. Le, Loiseau, A., and Pascard, H., Nature (London) 372, 761 (1994).CrossRefGoogle Scholar
10.Subramoney, S., Adv. Mater. 10, 1157 (1998).3.0.CO;2-N>CrossRefGoogle Scholar
11.Terrones, M., Grobert, N., Zhang, J.P., Terrones, H., Olivares, J., Hsu, W.K., Hare, J.P., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M., Chem. Phys. Lett. 285, 299 (1998).CrossRefGoogle Scholar
12.Grobert, N., Terrones, M., Osborne, O.J., Terrones, H., Hsu, W.K., Trasobares, S., Zhu, Y.Q., Hare, J.P., Kroto, H.W., and Walton, D.R.M., Appl. Phys. A 67, 595 (1998).CrossRefGoogle Scholar
13.Rao, C.N.R., Sen, R., Satishkumar, B.C., and Govindaraj, A., J. Chem. Soc., Chem. Commun. 15, 1525 (1998).CrossRefGoogle Scholar
14.Hsu, W.K., Hare, J.P., Terrones, M., Harris, P.J.F., Kroto, H.W., and Walton, D.R.M., Nature (London) 377, 687 (1995).CrossRefGoogle Scholar
15.Hsu, W.K., Terrones, H., Terrones, M., Grobert, N., Kirkland, A.I., Hare, J.P., Prassides, K., Townsend, P.D., Kroto, H.W., and Walton, D.R.M., Chem. Phys. Lett. 284, 177 (1998).CrossRefGoogle Scholar
16.Hsu, W.K., Li, J., Terrones, H., Terrones, M., Grobert, N., Zhu, Y.Q., Trasobares, S., Hare, J.P., Pickett, C.J., Kroto, H.W., and Walton, D.R.M., Chem. Phys. Lett. 301, 159 (1999).CrossRefGoogle Scholar
17.Blase, X., Rubio, A., Louie, S.G., and Cohen, M.L., Europhys. Lett. 28, 335 (1994).CrossRefGoogle Scholar
18.Zhang, Y., Suenaga, K., Colliex, C., and Iijima, S., Science 281, 973 (1998).CrossRefGoogle Scholar
19.Han, W., Redlich, P., Ernst, F., and Ru¨hle, M., Chem. Mater. 11, 3620 (1999).CrossRefGoogle Scholar
20.Han, W., Redlich, P., Ernst, F., and Ru¨hle, M., Appl. Phys. Lett. 75, 1875 (1999).CrossRefGoogle Scholar
21.Souche, C., Jouffrey, B., Hug, G., and Nelhiebel, M., Micron 29, 419 (1998).CrossRefGoogle Scholar
22.Charlier, J.C., Blase, X., Vita, A. De, and Car, R., Appl. Phys. A. 68, 267 (1999).CrossRefGoogle Scholar
23.Loiseau, A., Willaime, F., Demoncy, N., Schramchenko, N., Hug, G., Colliex, C., and Pascard, H., Carbon 36, 743 (1998).CrossRefGoogle Scholar
24.Gleize, P., Schouler, M.C., Gadelle, P., and Caillet, M., J. Mater. Sci. 29, 1575 (1994).CrossRefGoogle Scholar